Get Answers to all your Questions

header-bg qa

The work done to break up a drop of a liquid of radius R and surface tension \sigma into eight drops, all of the same size, is

Option: 1

\mathrm{4 \pi \sigma R^2}


Option: 2

\mathrm{2 \pi \sigma R^2}


Option: 3

\mathrm{\frac{1}{2} \pi \sigma R^2}


Option: 4

\mathrm{\frac{1}{4} \pi \sigma R^2}


Answers (1)

best_answer

Volume of big drop \mathrm{=\frac{4}{3} \pi R^3}. If r is the radius of each tiny drop, the total volume of eight drops \mathrm{= 8 \times \frac{4 \pi}{3} r^3=\frac{32}{3} \pi r^3}. Since the total volume remains unchanged, we have

                     \mathrm{ \frac{32}{3} \pi r^3=\frac{4}{3} \pi R^3 }

which gives \mathrm{r=\frac{R}{2}}. Now, surface area of big drop \mathrm{= 4 \pi R^2.}

Total surface area of eight drops \mathrm{ =32 \pi r^2=8 \pi R^2}

\mathrm{(\because r=R / 2).}

\mathrm{\therefore \quad}  Increase in surface area \mathrm{=8 \pi R^2-4 \pi R^2=4 \pi R^2.}

\mathrm{\therefore \quad}  Work done = surface tension \times increase in surface area

\mathrm{=4 \pi \sigma R^2}

Posted by

jitender.kumar

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks