Get Answers to all your Questions

header-bg qa

Below figures show (v_{x}, t) and (v_{y}, t) diagrams for a body of unit mass. Find the force as a function of time.

Answers (1)

From fig. (a),

Vx = 2t, for 0 < t < 1s

ax = 2/1 = 2, for 0 < t < 1s

V_{x} = 2(2-t), for 1 < t < 2s

ax= -2, for 1 < t < 2s

thus, Fx= ma (m = 1…..given)

                = 1(2) =2, for 0 < t < 1s

& Fx = 1(-2)

                = -2, for1 < t < 2s

From fig. (b),

a_{y} = \frac{1}{1}

    =1 ms-1, for 0 < t < 1

Fy = ma

    = 1.1 = 1 unit, for 0 < t < 1

ay = 0, for 1 < t

 F_{y}=1\times 0 =0  units for 1 < t < 2s

\overrightarrow{F} = \overrightarrow{F_{x}}\widehat{i} +\overrightarrow{ F_{y}}\widehat{j}

\overrightarrow{F} = 2\widehat{i} +4\widehat{j} for 0 < t < 1s

 \overrightarrow{F} =- 2\widehat{i} +0\widehat{j}, for 1 < t < 2s

 Thus, \overrightarrow{F}=-2\widehat{i}   for 1 < t <2s

For more than 2 seconds

a_{y}=0 , a_{x}=0

\therefore \overrightarrow{F}=0

Posted by

infoexpert24

View full answer