Q.2 Examine whether the following statements are true or false:

(i) { a, b } \not\subset { b, c, a }

(ii) { a, e } \subset { x : x is a vowel in the English alphabet}

(iii) { 1, 2, 3 } \subset { 1, 3, 5 }

(iv) { a } \subset { a, b, c }

(v) { a } \in { a, b, c }

(vi) { x : x is an even natural number less than 6}  \subset  { x : x is a natural number which divides 36} 

Answers (1)

(i) All elements of { a, b } lie in  { b, c, a }.So,{ a, b } \subset{ b, c, a }.

Hence,it is false.

(ii) All elements of { a, e } lie in {a,e,i,o,u}.

Hence,the statements given is true.

(iii) All elements of { 1, 2, 3 } are not present in { 1, 3, 5 }.

Hence,statement given is false.

(iv) Element of { a } lie in { a, b, c }.

Hence,the statement is true.

(v). { a } \subset { a, b, c }

So,the statement is false.

(vi) All elements {2,4,} lies in {1,2,3,4,6,9,12,18,36}.

Hence,the statement is true.

Exams
Articles
Questions