## Filters

Q&A - Ask Doubts and Get Answers
Q

# Find the angle between the following pairs of lines: (i) r vector = 2 i caret - 5 j caret + k caret + lambda 3 i caret + 2 j caret + 6 k caret

10.  Find the angle between the following pairs of lines:

(i)     $\overrightarrow{r}=2\widehat{i}-5\widehat{j}+\widehat{k}+\lambda (3\widehat{i}+2\widehat{j}+6\widehat{k})$ and $\overrightarrow{r}=7\widehat{i}-6\widehat{k}+\mu (\widehat{i}+2\widehat{j}+2\widehat{k})$

Answers (1)
Views

To find the angle A between the pair of lines $\vec{b_{1}}\ and\ \vec{b_{2}}$ we have the formula;

$\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |$

We have two lines :

$\overrightarrow{r}=2\widehat{i}-5\widehat{j}+\widehat{k}+\lambda (3\widehat{i}+2\widehat{j}+6\widehat{k})$ and

$\overrightarrow{r}=7\widehat{i}-6\widehat{k}+\mu (\widehat{i}+2\widehat{j}+2\widehat{k})$

The given lines are parallel to the vectors $\vec{b_{1}}\ and\ \vec{b_{2}}$;

where $\vec{b_{1}}= 3\widehat{i}+2\widehat{j}+6\widehat{k}$   and   $\vec{b_{2}}= \widehat{i}+2\widehat{j}+2\widehat{k}$ respectively,

Then we have

$\vec{b_{1}}.\vec{b_{2}} =(3\widehat{i}+2\widehat{j}+6\widehat{k}).(\widehat{i}+2\widehat{j}+2\widehat{k})$

$=3+4+12 = 19$

and $|\vec{b_{1}}| = \sqrt{3^2+2^2+6^2} = 7$

$|\vec{b_{2}}| = \sqrt{1^2+2^2+2^2} = 3$

Therefore we have;

$\cos A = \left | \frac{19}{7\times3} \right | = \frac{19}{21}$

or $A = \cos^{-1} \left ( \frac{19}{21} \right )$

Exams
Articles
Questions