Get Answers to all your Questions

header-bg qa

How much paper of each shade is needed to make a kite given in Figure, in which ABCD is a square with a diagonal of 44 cm.

 

              .

Answers (1)

Red = 242 \; cm^{2}

Yellow = 484\; cm^{2}

Green = 373.14 \; cm^{2}

Given,\; ABCD\; is\; a\; square.

We know that all sides of a square are equal

AB = BC = CD = DA and

\angle A = \angle B = \angle C = \angle D = 90^{\circ} [\because \; All\; angles\; of\; a\; square\; are\; 90^{\circ}]

In \Delta ABC,\; using \; Pythagoras \; theorem

(AC)^{2} = (AB)^{2}+ (BC)^{2}

(44)^{2} = (AB)^{2}+ (BC)^{2}\; \; \; \; \; \; \; \; [\Theta \; AB = BC\; equal\; sides]

44\times 44=2\left ( AB \right )^{2}

\frac{44\times 44}{2}=\left ( AB \right )^{2}

(AB)^{2} = 22 \times 44

Taking square root on both sides

\sqrt{\left ( AB \right )^{2}}=\sqrt{22\times 44}

AB=\sqrt{22\times 2\times 22}

AB=22\sqrt{2}

AB = BC = CD = DA =22\sqrt{2}\; cm

Now,\; Area\; of \; square\; ABCD = (side)^{2}

=\left ( 22\sqrt{2}\right )^{2}=22\times 22\times \sqrt{2}\times \sqrt{2}

= 484\times \sqrt{2\times 2}=484\times 2

Area\; of\; square\; ABCD = 968\; cm^{2}

But square ABCD is divided into four coloured squares.

So,\; area\; of\; Yellow \; I =\frac{968}{4}= 242 cm^{2}

Area\; of\; Yellow \; II =\frac{968}{4}= 242 \; cm^{2}

Area\; of\; Green \; III =\frac{968}{4}= 242 \; cm^{2}

Area\; of\; Red \; IV =\frac{968}{4}= 242 \; cm^{2}

Total\; yellow\; area\; = 242\; cm^{2} + 242\; cm^{2} = 484\; cm^{2}

We have to find the lower triangle of green colour as well.

Let\; a = 20\; cm, b = 20\; cm, c = 14\; cm

Semi\; perimeter(s) = \frac{a+b+c}{2}

= \frac{20+20+14}{2}

= \frac{54}{2}=27

Area of Triangular field:

By\; heron's\; formula =\sqrt{S\left ( S-a \right )\left ( S-b \right )\left ( S-c \right )}

=\sqrt{27\left ( 27-20\right )\left ( 27-20 \right )\left ( 27-14 \right )}

= \sqrt{3\times 3\times 3\times 7\times 7\times 13}

= 21\sqrt{3\times 13}

= 131.14\; cm^{2}

So\; total\; green\; area\; = 242 + 131.14 = 373.14\; cm^{2}

Hence,\; paper\; required

Red = 242\; cm^{2}

Yellow = 484\; cm^{2}

green = 373.14\; cm^{2}

Posted by

infoexpert21

View full answer