Get Answers to all your Questions

header-bg qa

If A lies in the second quadrant and 3 \tan A + 4 = 0, then the value of 2 cot A- 5 \cos A + \sin A is equal to

A. -\frac{53}{10}
B. \frac{23}{10}
C. \frac{37}{10}
D. \frac{7}{10}

Answers (1)

The answer is the option (b). 

   3\tan A+4=0      [A lies in second quadrant]   


 \tan A= - \frac{4}{3} \\\\

\cos A= - \frac{3}{5}        [A lies in second quadrant]   


 \\ \sin A=\frac{4}{5} \\\\ \cot A= - \frac{3}{4} \\\\ 2\cot A - 5\cos A+\sin A=2 \left( - \frac{3}{4} \right) - 5 \left( - \frac{3}{5} \right) +\frac{4}{5}= - \frac{3}{2}+3+\frac{4}{5}=\frac{23}{10} \\\\

 

Hence, correct option is (b).  

Posted by

infoexpert21

View full answer