# 13 In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.     (e)      4x + 8y + z – 8 = 0 and y + z – 4 = 0

Two planes

$L_{1}:a_{1}x+b_{1}y+c_{1}z = 0$ whose direction ratios are $a_{1},b_{1},c_{1}$ and $L_{2}:a_{2}x+b_{2}y+c_{2}z = 0$ whose direction ratios are $a_{2},b_{2},c_{2}$,

are said to Parallel:

If, $\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

and Perpendicular:

If, $a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0$

And the angle between $L_{1}\ and\ L_{2}$ is given by the relation,

$A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |$
So, given two planes  $4x + 8y + z -8 = 0\ and\ y + z - 4 = 0$

Here,

$a_{1} = 4,b_{1} = 8, c_{1} = 1$   and   $a_{2} = 0,b_{2} = 1, c_{2} = 1$

So, applying each condition to check:

Parallel check:   $\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

$\Rightarrow \frac{a_{1}}{a_{2}} =\frac{4}{0}, \frac{b_{1}}{b_{2}}=\frac{8}{1},\frac{c_{1}}{c_{2}} = \frac{1}{1}$

Clearly, the given planes are NOT parallel as  $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$.

Perpendicular check: $a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0$

$\Rightarrow 4(0)+8(1)+1(1) =0+8+1 = 9 \neq 0$.

Clearly, the given planes are NOT perpendicular.

Then finding the angle between them,

$A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |$

$= \cos^{-1}\left | \frac{9}{\sqrt{4^2+8^2+1^2}.\sqrt{0^2+1^2+1^2}} \right |$

$= \cos^{-1}\left | \frac{9}{\sqrt{81}.\sqrt{2}} \right |$

$= \cos^{-1}\left ( \frac{9}{9\sqrt{2}} \right ) = \cos^{-1}\left ( \frac{1}{\sqrt{2}} \right )$

$= 45^{\circ}$

## Related Chapters

### Preparation Products

##### Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
##### Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
##### Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
##### Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-