Get Answers to all your Questions

header-bg qa

Integrating factor of the differential equation \cos x \frac{d y}{d x}+y \sin x=1 is:
A. cosx
B. tanx
C. sec x
D. sinx

Answers (1)

Differential equation is
$$ \\ \cos x \frac{d y}{d x}+y \sin x=1 \\ \Rightarrow \frac{d y}{d x}+\frac{y \sin x}{\cos x}=\frac{1}{\cos x} \\ \Rightarrow \frac{d y}{d x}+(\tan x) y=\sec x
Compare
$$ \frac{d y}{d x}+(\tan x) y=\sec x
With

\frac{d y}{d x}+P y=Q^{\prime}$ we get, $P=\tan x$ and $Q=\sec x
The IF integrating factor is given by 
$$ \Rightarrow \mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\int \frac{\sin \mathrm{x}}{\cos \mathrm{x}} \mathrm{dx}}
Substitute \cos x=t  hence
\\\frac{\mathrm{dt}}{\mathrm{dx}}=-\sin \mathrm{x}$ \\$\sin x d x=-d t
Resubstitute the value of t
\Rightarrow \mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\log (\cos \mathrm{x})^{-1}}

$$\\ \Rightarrow \mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\log (\cos \mathrm{x})^{-1}} \\ \Rightarrow \mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\log {\sec \mathrm{x}}} = \sec x

hence IF is sec x

Option C is correct.

Posted by

infoexpert22

View full answer