Get Answers to all your Questions

header-bg qa

Solution of the differential equation  \tan y\sec^2x dx + \tan x \sec^2 ydy = 0 is:
A. tanx + tany = k
B. tanx – tan y = k
C. \frac{\tan x}{\tan y}= k
D. tanx . tany = k

Answers (1)

The given differential equation is
\tan y\sec^2x dx + \tan x \sec^2 ydy = 0
Divide it by tanx tany
$$ \Rightarrow \frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\operatorname{tany}} d y=0
Integrate
$$ \Rightarrow \int \frac{\sec ^{2} x}{\tan x} d x+\int \frac{\sec ^{2} y}{\tan y} d y=0
Put tanx=t hence,
\sec ^{2} x d x=d t
Put tany =z  hence
$$ \frac{d z}{d y}=\sec ^{2} y
That is \sec ^{2} y d y=d t
\Rightarrow \int \frac{d t}{t}+\int \frac{d z}{z}=0

\log t+\log z+c=0
Resubstitue t and z

\log (\tan x)+\log (\tan y)+c=0
using \log a+\log \mathrm{b}=\log \mathrm{ab}
\log ($ tanxtany $)=-\mathrm{c}
\tan x \tan y =e^{-c}

e^{-c}is constant because e is a constant and c is the integration constant let it be denoted as \mathrm{e}^{-c}=\mathrm{k}\\

\tan x \tan y =\mathrm{k}

Option D is correct.

Posted by

infoexpert22

View full answer