Q2. Simplify and express the result in power notation with positive exponent.

    (ii) \left (\frac{1}{2^3} \right )^2

Answers (1)

The detailed solution for the above-written question is as follows

We know the exponential formula

\frac{a^{m}}{b^{m}} = (\frac{a}{b})^{m}        and   a^{-m}= \frac{1}{a^{m}}  and  (a^{m})^{n} = a^{mn}

 

So, we have given 

a = 1, b=2  

By using above exponential law,

\frac{a^{m}}{b^{m}} = \frac{1}{(2^{3})^{2}} = \frac{1}{2^{6}}

                         = \frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}\times \frac{1}{2} = \frac{1}{64}

 

Most Viewed Questions

Preparation Products

Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions