Get Answers to all your Questions

header-bg qa

The perimeter of a triangular field is 420 m and its sides are in the ratio 6 : 7 : 8. Find the area of the triangular field.

Answers (1)

[2100\sqrt{15}\; m^{2} ]

Given perimeter of a triangular field = 420 m and ratio of sides = 6 : 7 : 8

Let the sides of triangular field be = 6x, 7x and 8x

\therefore Perimeter\; of\; triangular\; field = 6x + 7x +\; 8x

420 = 6x + 7x + 8x

420 = 21x

x=\frac{420}{21}

x = 20

Then\; sides\; are\; 6 \times 20 = 120m, 7 \times 20 = 140m\; and \; 8 \times 20 = 160m

Using Heron’s formula for finding the area of \DeltaABC

a = 120m, b = 140m, c = 160m

S=\frac{a+b+c}{2}=\frac{120+140+160}{2}=\frac{420}{2}=210m

Area \; of\; \; triangle\; \Delta ABC =\sqrt{S\left ( S-a \right )\left ( S-b \right )\left ( S-c \right )}

=\sqrt{210\left ( 210-120 \right )\left ( 210-140 \right )\left ( 210-160\right )}

= \sqrt{210\times 90\times 70\times 50}

= \sqrt{7\times 30\times 3\times 30\times 7\times 10\times 5\times 10}

= \sqrt{7\times 7\times 10\times 10\times 30\times 30\times 3\times 5}

2100\sqrt{15}\; m^{2}

Posted by

infoexpert21

View full answer