Q

# The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each

7.56     The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each

Views

We already know that $p^H$ can be calculated as- $-\log[H^+]$
to calculate the concentration of $[H^+]$ = antilog (-$p^H$)

Thus, the hydrogen ion concentration of followings $p^H$ values are-

(i)  $p^H$of milk = 6.8
Since, $p^H=-\log[H^+]$
6.8 = $-\log[H^+]$
$\log[H^+]$ = -6.8

$[H^+]$ = anitlog(-6.8)

= $1.5\times10^{-7}M$

(ii) $p^H$of black coffee = 5.0

Since, $p^H=-\log[H^+]$

5.0 =$-\log[H^+]$

$\log[H^+]$= -5.0

$[H^+]$= anitlog(-5.0)

= $10^{-5}M$

(iii) $p^H$ of tomato juice = 4.2

Since, $p^H=-\log[H^+]$

4.2 =$-\log[H^+]$

$\log[H^+]$= -4.2

$[H^+]$= anitlog(-4.2)

= $6.31\times10^{-5}M$

(iv) $p^H$ of lemon juice = 2.2

Since, $p^H=-\log[H^+]$

2.2 = $-\log[H^+]$

$\log[H^+]$= -2.2

$[H^+]$= anitlog(-2.2)

=$6.31\times10^{-3}M$

(v) $p^H$ of egg white = 7.8

Since, $p^H=-\log[H^+]$

7.8 = $-\log[H^+]$

$\log[H^+]$ = -7.8

$[H^+]$= anitlog(-7.8)

= $1.58\times10^{-8}M$

Exams
Articles
Questions