# A cone and a cylinder are having the same base . Find the ratio of their heights if their volumes are equal .

Answers (1)

Solution:  Let the radius of the common base be $r$ . Let $h_{1}$ and $h_{2}$ be the heights of the cone and cylinder respectively . Then ,

Volume of the cone

$=\frac{1}{3}\pi r^2 h_{1}$ ,

Volume of the cylinder $=\pi r^2h_{2}$

It is given that the cone and the cylinder are of the same volume .

$\therefore$              $\frac{1}{3} \pi r^2 h_{1}=\pi r^2 h_{2}\Rightarrow \frac{1}{3}h_{1}=h_{2}$

$\Rightarrow$           $\frac{h_{1}}{h_{2}}=\frac{3}{1}\Rightarrow h_{1}:h_{2}=3:1$

Hence , the ratio of the height of the cone and cylinder is 3:1.

## Most Viewed Questions

### Preparation Products

##### Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
##### Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
##### Knockout NEET (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
##### Knockout NEET (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
##### Test Series JEE Main 2024

Chapter/Subject/Full Mock Tests for JEE Main, Personalized Performance Report, Weakness Sheet, Complete Answer Key,.

₹ 7999/- ₹ 4999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course

Exams
Articles
Questions