Find the total differential coefficient of x^2y with respect to x when x, y are related by x^2+y^2+xy=1
\text{Given the constraint: } x^2 + y^2 + xy = 1
\text{Differentiate implicitly w.r.t. } x:
$2x + 2y\,\frac{dy}{dx} + y + x\,\frac{dy}{dx} = 0$
\text{Collect the } \frac{dy}{dx} \text{ terms:}
$(2y + x)\frac{dy}{dx} = -(2x + y)$
\text{Thus,}
$\frac{dy}{dx} = -\,\frac{2x + y}{2y + x}$
\text{Now consider } f = x^2 y.
\text{Differentiate:}
$\frac{df}{dx} = \frac{d}{dx}(x^2 y) = 2xy + x^2 \frac{dy}{dx}$
\text{Substitute } \frac{dy}{dx}:
$\frac{df}{dx} = 2xy + x^2\left( -\,\frac{2x + y}{2y + x} \right)$
\text{Therefore, the total differential coefficient is:}
$\boxed{\frac{df}{dx} = 2xy - \frac{x^2(2x + y)}{2y + x}}$