Get Answers to all your Questions

header-bg qa

How to derive the formula for surface area of a sphere

Answers (1)

best_answer

Let;radius;of;sphere;be;R;and;	heta;be;the;vertical;angle\* consider;the;figure,\*Now,;select;the;thin;strip;at;an;angle;of;d	heta\* Rightarrow thickness;will;be=Rd	heta\* Now,;we;can;think;it;as;a;cylinder;with ; radius=R sin	heta,;height=rd	heta\* Rightarrow surface;area,A=2pi r h\* Rightarrow dA=2pi Rsin	heta Rd	heta\* Integrate;both;side;\* A
ightarrow 0;to;A;and; 	heta
ightarrow 0;to;pi\*Rightarrow int_0^A dA=int_0^pi 2pi R^2 sin	heta d	heta\* Rightarrow A=2pi R^2[-cos pi - (-cos 0)]\*ecause cos pi =-1;and;cos 0=1 \*A=2pi R^2(2)\*Rightarrow A=4pi R^2\* So,;Surface;area;of;Sphere;is;4pi R^2

Posted by

Deependra Verma

View full answer