Get Answers to all your Questions

header-bg qa

If A is a square matrix of ordern, then t(a * dj(a * dj(a * dj(A)))) =

Answers (1)

best_answer

t(A \cdot \operatorname{adj}(A) \cdot \operatorname{adj}(A) \cdot \operatorname{adj}(A))=t\left(A \cdot \operatorname{adj}(A)^3\right)

\operatorname{adj}(A)=\operatorname{det}(A) \cdot A^{-1} \Rightarrow \operatorname{adj}(A)^3=(\operatorname{det}(A))^3 \cdot A^{-3}

A \cdot \operatorname{adj}(A)^3=(\operatorname{det}(A))^3 \cdot A \cdot A^{-3}=(\operatorname{det}(A))^3 \cdot A^{-2}

t\left(A \cdot \operatorname{adj}(A)^3\right)=(\operatorname{det}(A))^3 \cdot\left(A^{-2}\right)^{T}

Posted by

Divya Sharma

View full answer