Get Answers to all your Questions

header-bg qa

If x=rsinAcosC , y=rsinAsinC and z=rcosA prove that r^2=x^2+y^2+z^2

Answers (1)

best_answer

Solution: We have , 

\ x^2+y^2+z^2=r^2sin^2Acos^2C+r^2sin^2Asin^2C+r^2cos^2A\ \Rightarrow x^2+y^2+z^2=r^2sin^2A(cos^2C+sin^2C)+r^2cos^2A\ \Rightarrow x^2+y^2+z^2=r^2sin^2A+r^2cos^2A=r^2

 

Posted by

Deependra Verma

View full answer