Get Answers to all your Questions

header-bg qa

Prove that ( tan x + sin x) /(tan x - sin x) =( sec x +1) /(secx -1)

Answers (1)

best_answer

Solution: We have, 

LHS=

      \ (tanx+sinx)/(tanx -sin)\ \Rightarrow (sinx/cosx +sinx)/(sinx/cosx-sinx)\ \Rightarrow sinx(1/cosx+1)/sinx(1/cosx-sinx)\ \ Rightarrow (secx+1)/(secx-1)

 

Posted by

Deependra Verma

View full answer