Get Answers to all your Questions

header-bg qa

Prove that (tan x+ sinx)/(tanx-sinx)=(secx+1)/(secx-1)

Answers (1)

best_answer

Solution: We have , 

       LHS \= (tanx+sinx)/(tanx- sinx)\ \Rightarrow (sinx/cosx +sinx)/(sinx/cosx-sinx)\ \Rightarrow [sinx(1/cosx+1)]/[sinx(1/cosx -1)]\ \ Rightarrow (secx+1)/(secx-1)

Posted by

Deependra Verma

View full answer