Get Answers to all your Questions

header-bg qa

The scalar product of the vector \vec{a}=\hat{i}+\hat{j}+\hat{k} with a unit vector along the sum of the vectors \vec{b}=2\hat{i}+4\hat{j}-5\hat{k}\: \: and\: \: \vec{c}=\lambda\hat{i}+2\hat{j}+3\hat{k} is equal to 1. Find the value of \lambda and hence find the unit vector along \vec{b}+\vec{c}.

 

 

 

 
 
 
 
 

Answers (1)

Then , \vec{n}= \frac{\left ( 2+\lambda \right )\hat{i}+b\hat{j}-2\hat{k}}{\sqrt{\left ( 2+\lambda \right )^{2}+36+4}}
 given, \vec{a}\cdot \hat{n}= 1
\left ( \hat{i}+ \hat{j}+ \hat{k} \right )\cdot \left [ \frac{\left ( 2+\lambda \right ) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\left ( 2+\lambda \right )^{2}+40}} \right ]= 1
\Rightarrow \left ( 2+\lambda \right )+6\cdot 2= \sqrt{\left ( 2+\lambda \right )^{2}+90}
\Rightarrow \left ( 2+\lambda \right )+4= \sqrt{\left ( 2+\lambda \right )^{2}+40}        \left [ \because \hat{i}\cdot \hat{i}= 1,\hat{j}\cdot \hat{j}= 1,\hat{k}\cdot \hat{k}= 1 \right ]
\Rightarrow \lambda +6= \sqrt{\left ( 2+\lambda \right )^{2}+40}
On squaing both sides, we get
\left ( 6+\lambda \right )^{2}= \left ( 2+\lambda \right )^{2}+40
\Rightarrow 36+\lambda ^{2}+12\lambda = 4\lambda ^{2}+4\lambda +40
\Rightarrow 36+12\lambda - 4-4\lambda - 40= 0
\Rightarrow 8\lambda -8= 0
\Rightarrow \lambda = 1
then, \vec{b}+\vec{c}= \left ( 2+\lambda \right )\hat{i}+6\hat{j}+\, -2\hat{k}
                   = 3\hat{i}+6\hat{j}-2\hat{k}
unit vector along \left ( \vec{b}+\vec{c} \right )= \frac{3\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{9+36+4}}
                                       = \frac{3\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{49}}= \frac{3\hat{i}+6\hat{j}-2\hat{k}}{-7}

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads