Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Find the difference of the areas of a sector of angle 120° and its corresponding major sector of a circle of radius 21 cm.

Answer [462 cm2]

Solution

            

Radius = 21 cm

Angle = 120°

Area of circle = \pi r^{2}

  \\=\frac{22}{7}\times 21\times 21\\ =1386 cm^{2}

Area of minor sector with angle 120° OABO =\frac{\pi r^{2} \theta}{360}                                   \left [ \theta =120^{\circ} \right ]                                                                                   

                                                              \\=\frac{22}{7}\times \frac{21\times 21}{360}\times120\\ =462cm^{2}

Area of major sector AOBA= Area of circle – area of minor sector

                                           = 1386-462=924cm2

Required area =924-462=462cm2

View Full Answer(1)
Posted by

infoexpert24

Find the difference of the areas of two segments of a circle formed by a chord of length 5 cm subtending an angle of 90° at the centre.

Answer [32.16cm2]

Solution

            

By using Pythagoras in \triangleABC
   \\(AB)^{2}+(BC)^{2}=(AC)^{2}\\ r^{2}+r^{2}=25\\ 2r^{2}=25\\ r=\frac{5}{\sqrt{2}}cm

 Area of circle =\pi r^{2}=\frac{22}{7} \times \frac{5}{\sqrt{2}}\times\frac{5}{\sqrt{2}}=39.28cm^{2}

Area of sector =\frac{\pi r^{2} \theta}{360}
        \\=3.14 \times \frac{25}{2}\times\frac{90}{360}\\ =9.81cm^{2}

Area of \triangle ABC=\frac{1}{2}\times base \times height

                         \\=\frac{1}{2}\times \frac{5}{\sqrt{2}} \times \frac{5}{\sqrt{2}}\\ =\frac{25}{4} =6.25cm^{2}

Area of minor segment = Area of sector – Area of DABC

                        =9.81-6.25

                        =3.56cm2

Area of major segment = Area of circle – Area of minor segment

                        =39.28-3.56=35.72cm2

Required difference = Area of major segment – Area of minor segment

                             =35.72-3.56=32.16cm2

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find the number of revolutions made by a circular wheel of area 1.54 m2 in Rolling a distance of 176 m.

[40] revolutions

Solution

Circumference of circle =2\pi r

Area of wheel = 1.54m2

Distance = 176 m 

\\\pi r^{2}=1.54\\\\ r^{2}=\frac{154}{100}\times \frac{7}{22}\\\\ r=\sqrt{\frac{539}{1100}}

r  =  0.7m

Circumference   =2\pi r                   

 \\=2 \times \frac{22}{7}\times0.7\\ =2 \times \frac{22}{7}\times \frac{7}{10}\\ =\frac{44}{10}\\ =4.4m

Number of revolution =\frac{\text{distance}}{\text{circumference}}\\

            

=\frac{176}{44}\times 10=40\ revolutions

           

View Full Answer(1)
Posted by

infoexpert24

Find the area of the shaded region given in Figure.

[Area of shaded area=154.88cm2 ]

Solution

Area of square PQRS =(side)2=(14)2

                                   =196 cm2

Area of ABCD (let side a) =(side)2=(a)2

Area of 4 semi circle \left ( r=\frac{a}{2} \right )=4 \times \frac{1}{2}\pi\left ( \frac{a}{2} \right )^{2}                            

Area of semi-circle=\frac{1}{2}\times \pi \times r^{2}

\\=\frac{2\pi a^{2}}{4}\\ =\frac{\pi a^{2}}{2}

Total inner area = Area of ABCD + Area of 4 semi circles

        \\=a^{2}+\frac{\pi a^{2}}{2}\\

\\EF=8cm\\ EF=\frac{a}{2}+a+\frac{a}{2}\\ 8=\frac{a+2a+a}{2}\\ 4a=16\\ a=4cm

Area of inner region =4^{2}+\frac{\pi 4^{2}}{2}\\
                             \\=16+\frac{ 16 \pi}{2}\\ =16+8 \pi

Area of shaded area = Area of PQRS – inner region area         

                                 \\=196-16-8 \pi\\ =180-8 \times 3.14\\ =180-25.12\\ =154.88 cm^{2}

View Full Answer(1)
Posted by

infoexpert24

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

The central angles of two sectors of circles of radii 7 cm and 21 cm are respectively 120° and 40°. Find the areas of the two sectors as well as the lengths of the corresponding arcs. What do you observe?

\because Area of sector =\frac{\pi r^{2} \theta}{360}

Radius of first sector (r1) = 7 cm

Angle (\theta_{1} ) = 120°

Area of first sector(A1) =\frac{\pi r_{1}^{2} \theta}{360}

    \\=\frac{22 \times 7 \times 7 \times 120^{\circ} }{360^{\circ}}\\ =\frac{154}{3}cm^{2}

Radius of second sector (r2) = 21 cm

Angle (\theta_{2} ) = 40°

Area of sector of second circle (A2)=\frac{\pi r_{2}^{2} \theta}{360}
                                             \\=\frac{22}{7}\times \frac{21\times 21}{360}\times40\\\\ =154 cm^{2}

Corresponding arc length of first circle =\frac{2\pi r_{1} \theta}{360}

=\frac{\pi r_{1} \theta}{180}

\\=\frac{22}{7}\times \frac{7\times 120}{180}\\=\frac{44}{3}cm

Corresponding arc length of second circle =\frac{2\pi r_{2}\theta}{360}

=\frac{\pi r_{2}\theta}{180}

\\=\frac{22}{7}\times \frac{21\times 40}{180}\\=\frac{44}{3}cm

We observe that the length of the arc of both circles is equal.

View Full Answer(1)
Posted by

infoexpert24

Area of a sector of central angle 200° of a circle is 770 cm2. Find the length of the corresponding arc of this sector.

\left [ 73\frac{1}{3}cm \right ] 

Solution

Area of sector=\frac{\pi r^{2}\theta}{360}

Angle = 200°

  Area of sector = 770 cm2    

\\\frac{\pi r^{2}\theta}{360}=770\\\\ \pi r^{2} \times 200^{\circ}=770 \times 360 ^{\circ}\\\\ r^{2}=\frac{770 \times 360 ^{\circ} \times 7}{200^{\circ \times 22}} \;\;\; \left [ here \pi=\frac{22}{7} \right ]\\\\ r^{2}=49 \times 9\\ r=\sqrt{49 \times 9}=7 \times 3=21cm

Length of the corresponding arc =\frac{\theta \times 2\pi r}{360}
\\=\frac{200^{\circ} \times 2 \times \pi \times 21}{360^{\circ}}\\\\ =\frac{10 \times 7}{3}\times\frac{22}{7}\\\\ =\frac{220}{3}\\\\ =73\frac{1}{3}cm

View Full Answer(1)
Posted by

infoexpert24

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The length of the minute hand of a clock is 5 cm. Find the area swept by the minute hand during the time period 6 : 05 am and 6 : 40 a m.

\left [ 45\frac{5}{6}cm^{2} \right ]

Solution

We know that minute hand revolving in 60 min =360^{\circ}

In 1 minute it is revolving =\frac{360}{60}=6^{\circ}

Time difference =(6:40am -6:05am) =35 min

In 6:05 am and 6.40 am there is 35 minutes

In 35 minutes angle between min hand and hour hand =\left (6\times 35 \right )^{\circ} =210^{\circ}

Length of minute hand (r)=5cm

Area of sector =\frac{\pi r^{2}\theta}{360}

\\=\frac{22}{7}\times \frac{5 \times 5 \times 210^{\circ}}{360}\;\;\;\left \{\because \theta = 210^{\circ} \right \}\\ =\frac{11\times 5\times 5}{6}\\ =\frac{275}{6}\\ =45\frac{5}{6}cm^{2}                                                        

Hence required area is 45\frac{5}{6}cm^{2}

View Full Answer(1)
Posted by

infoexpert24

An archery target has three regions formed by three concentric circles as shown in Figure. If the diameters of the concentric circles are in the ratio 1 : 2 : 3, then find the ratio of the areas of three regions

[1 : 3 : 5]

Solution

 

d1:d2:d3   =   1: 2 : 3 [multiplying by s]

  =   s : 2s  :  3s       

 Radius of inner circle (r1)=\frac{s}{2}

Radius of middle circle (r2)=\frac{2s}{2}=s

Radius of outer circle (r3)=\frac{3s}{2}

Area of region enclosed between second and first circle   

 \\=\pi r_{2}^{2}-\pi r_{1}^{2}\\ =\pi s^{2}-\frac{\pi s^{2}}{4}\\ =\frac{3 \pi s^{2}}{4}

 Area of region enclosed between third and second circle   

\\=\pi r_{3}^{2}-=\pi r_{2}^{2}\\ =\frac{\pi 9s^{2}}{4}-\pi s^{2}\\ =\frac{ 5\pi s^{2}}{4}

Area of first circle =\pi r_{1}^{2}=\frac{\pi s^{2}}{4}

Ratio of area of three regions

\\=\frac{\pi s^{2}}{4}:\frac{3\pi s^{2}}{4}:\frac{5\pi s^{2}}{4}\\ =\pi s^{2}:3 \pi s^{2}:5\pi s^{2}\\ =1:3:5

           

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

All the vertices of a rhombus lie on a circle. Find the area of the rhombus, if area of the circle is 1256 cm2. (Use \pi = 3.14).

Answer [800 cm2]

Solution

 

Given that area of circle =1256cm2
 \\\pi r^{2}=1256\\\\ r^{2}=\frac{1256}{314}\times 100\\\\ r^{2}=400 \; \; \; \; \; \; \; \; \left ( \pi=3.14 \right )\\\\ r=\sqrt{400}\\\\ r=20cm

Diameter of circle = 40 cm

As we know that the diameter of circle is equal

Diagonals of rhombus = Diameters of circle = 40 cm

Each diagonals of rhombus = 40 cm

Area of rhombus =\frac{1}{2}  \times product of digonals

                            = \frac{1}{2}  \times 40 \times 40

                            = 800cm2

Hence required area of rhombus is =800cm2

           

View Full Answer(1)
Posted by

infoexpert24

Floor of a room is of dimensions 5 m × 4 m and it is covered with circular tiles of diameters 50 cm each as shown in Figure. Find the area of floor that remains uncovered with tiles. (Use \pi = 3.14)

[4.3 m2]

Solution

Diameter of tile =50cm=0.5m      (1m = 100cm)

Radius =\frac{50}{2}=25=0.25m

Number of tiles lengthwise =\frac{5}{0.5}=10  tiles

Number of tiles widthwise =\frac{4}{0.5}=8  tiles

Total tiles =10 \times 8=80

Area of floor not covered by tiles = Area of rectangular floor – Area of 80 tiles 

                                            \\=5 \times 4-80\pi r^{2}\\ =20-80 \times \pi \times 0.25 \times 0.25\\ =20-\frac{8 \times 314 \times 25 \times 25}{100 \times100\times100}\\ =20-\frac{157}{10}\\ =20-15.7\\ =4.3m^{2}

           

View Full Answer(1)
Posted by

infoexpert24

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img