2. Draw a rough sketch of a quadrilateral KLMN. State,
(a) two pairs of opposite sides
(b) two pairs of opposite angles
(c) two pairs of adjacent sides
(d) two pairs of adjacent angles
The following is the sketch of a quadrilateral KLMN
(a) Two pairs of opposite sides are
(i) KL and MN.
(ii) LM and NK
(b) Two pairs of opposite angles are
    (i)  and 
    (ii)  and 
(c) Two pairs of adjacent sides are
(i) KL and LM
(ii) LM and MN
(d) Two pairs of adjacent angles are
    (i)  and 
    (ii)  and 
1.Draw a rough sketch of a quadrilateral PQRS. Draw its diagonals. Name them. Is the meeting point of the diagonals in the interior or exterior of the quadrilateral?
Diagonal PR and diagonal SQ meet at O which is inside the quadrilaterl
View Full Answer(2)
                Q : 18       If A is an invertible matrix of order 2, then det   is equal to
                (A)        (B)  
       (C)  
       (D) 
Given that the matrix is invertible hence  exists and 
Let us assume a matrix of the order of 2;
.
Then .
    and  
Now,
   
Taking determinant both sides;
Therefore we get;
Hence the correct answer is B.
View Full Answer(1)
Q : 17        Let A be a nonsingular square matrix of order . Then 
 is equal to
                 (A)       (B) 
      (C) 
      (D) 
We know the identity 
Hence we can determine the value of .
Taking both sides determinant value we get,
     or   
or taking R.H.S.,
or, we have then     
Therefore 
Hence the correct answer is B.
View Full Answer(1)
Study 40% syllabus and score up to 100% marks in JEE
Q : 16      If    , verify that 
. Hence find 
.
Given matrix: ;
To show: 
Finding each term:
So now we have, 
Now finding the inverse of A;
Post-multiplying by  as, 
                                        ...................(1)
Now,
From equation (1) we get;
Hence inverse of A is :
View Full Answer(1)
Q : 15     For the matrix     Show that 
     Hence, find 
.
.
Given matrix: ;
To show: 
Finding each term:
So now we have, 
Now finding the inverse of A;
Post-multiplying by  as, 
                                        ...................(1)
Now,
From equation (1) we get;
View Full Answer(1)
Q : 14      For the matrix  , find the numbers 
 and 
 such that 
.
Given  then we have the relation 
 
So, calculating each term;
therefore  ;
So, we have equations;
   and 
We get .
View Full Answer(1)
Q : 13            If    , show that  
. Hence find 
Given  then we have to show the relation 
So, calculating each term;
therefore  ;
Hence .
 
[Post multiplying by , also 
]
View Full Answer(1)
                Q : 12        Let      and 
 .  Verify that  
.
We have  and 
.
then calculating;
Finding the inverse of AB.
Calculating the cofactors fo AB:
        
     
Then we have adj(AB):
and |AB| = 61(67) - (-87)(-47) = 4087-4089 = -2
Therefore we have inverse:
                                                      .....................................(1)
Now, calculating inverses of A and B.
|A| = 15-14 = 1 and |B| = 54- 56 = -2
     and    
therefore we have
    and  
Now calculating .
                ........................(2)
From (1) and (2) we get
Hence proved.
View Full Answer(1)Q : 11 Find the inverse of each of the matrices (if it exists).
                 
Given the matrix :  
To find the inverse we have to first find adjA then as we know the relation:
So, calculating |A| :
Now, calculating the cofactors terms and then adjA.
                  
                      
             
             
               
So, we have 
Therefore inverse of A will be:
View Full Answer(1)
Study 40% syllabus and score up to 100% marks in JEE
    CBSE 8 Class
CBSE 12 Class
CBSE 6 Class
Class 12
Class 6
Class 8
Chemistry
Maths
Chemistry Part I Textbook for Class XII
Mathematics Part I Textbook for Class XII
Mathematics Textbook for Class VIII
Mathematics Textbook for Class VI
Practical Geometry
Determinants
Chemical Kinetics
Basic Geometrical Ideas
                Draw a rough sketch of a quadrilateral KLMN. State, (a) two pairs of opposite sides,
If matrix A = 2 -1 1 -1 2 -1 1-1 2, Verify that A^3-6A^2+9A-4I = O and hence find A^-1.
For the matrix A = 1 1 1 1 2 -3 2 -1 3 Show that A^3-6A^2+5A+11 I =O. Hence, find A^-1.
For the matrix A = 3 2 1 1 , find the numbers a and b such that A^2+aA+bI= O.
If A = matrix 3 1 -1 2 , show that A^2 - 5A + 7I = O. Hence find A^-1.
Let A = matrix 3 7 2 5 and B = matrix 6 8 7 9. Verify that (AB)^-1 = B^-1 A^-1