Get Answers to all your Questions

header-bg qa
Filter By

All Questions

To find the standard potential of M3+/M electrode, the following cell is constituted: Pt/M/M3+(0.001 mol L−1)/Ag+(0.01 mol L−1)/Ag \ The emf of the cell is found to be 0.421 volt at 298 K.  The standard potential of half reaction M3++3e → M at 298 K will be : Given  E\theta Ag+/Ag at 298 K=0.80 Volte
Option: 1  0.38 Volt
Option: 2  0.32 Volt
Option: 3 1.28 Volt
Option: 4 0.66 Volt  
 

View Full Answer(1)
Posted by

vishal kumar

What is the standard reduction potential \small \left ( E^{\circ} \right )  for Fe3+ \small \rightarrow Fe ? Given that: Fe2+ + 2e- \small \rightarrow Fe; \small E^{\circ} Fe2+ /Fe = -0.47V Fe3+ +e- \small \rightarrow Fe2+;\small E^{\circ} Fe3+/Fe2+=+0.77V  
Option: 1  −0.057 V
Option: 2 +0.057 V
Option: 3 +0.30 V
Option: 4  −0.30 V  
 

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The oxidation number of potassium in \mathrm{K_2O , K_2O_2 \: and\: KO_2} respectively is :
Option: 1 +1,\: +1\: and\: +1
Option: 2 +2,\: +1\: and\: +\frac{1}{2}
Option: 3 +1,\: +2\: and\: +4
Option: 4 +1,\: +4\: and\: +2
 

\mathrm{For \: K_2O:} 2x - 2 = 0\\\: \: \:

                        x = +1

\mathrm{For\ K_2O_2:} 2x - 2 = 0

(In peroxide, the oxidation state of oxygen is -1)
                        x = +1

\mathrm{For\ KO_2:} x - 2\times \frac{1}{2} = 0

(In superoxide, the oxidation state of oxygen is -1/2)
                      x = +1

Therefore, Option(1) is correct.

View Full Answer(1)
Posted by

Kuldeep Maurya

Given that the standard potentials (Eo) of Cu2+|Cu and Cu+|Cu are 0.34V and 0.522V respectively, the Eo of Cu2+|Cu+ is:
Option: 1 -0.182 V
Option: 2 +0.158V
Option: 3 -0.158 V
Option: 4 0.182 V
 

Given,

\mathrm{Cu^{2+}+2e^-\longrightarrow Cu, E^0 = 0.34~V} \quad (1)

\mathrm{Cu^{+}+e^-\longrightarrow Cu, E^0 = 0.522~V} \quad (2)

We need to find out the electrode potential of the reaction

\mathrm{Cu^{2+}+e^-\longrightarrow Cu^+, E^0 = ?} \quad (3)

Reaction (3) can be obtained by carrying out the operation (1) - (2)

Thus, we can write 

\mathrm{\Delta G_3^0 =\Delta G_1^0 -\Delta G_2^0}

\Rightarrow\mathrm{-FE^0_3 = -2F(0.34)-(-F(0.522))}

\Rightarrow\mathrm{E^0_3 = 2(0.34)-(0.522)}

\Rightarrow\mathrm{E^0_3 = 0.158~V}

Therefore, Option(2) is correct.

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

For an electrochemical cell \mathrm{Sn(s)\left | Sn^{2+}(aq,1M) \right |\left | Pb^{2+}(aq,1M) \right |Pb(s)} the ratio \mathrm{\frac{\left [ Sn^{2+} \right ]}{\left [ Pb^{2+} \right ]}} When this cell attains equilibrium is _____. \mathrm{( Given :E^{0}_{Sn^{2+} | Sn} =-0.14V,} \mathrm{E^{0}_{Pb^{2+} | Pb }=-0.13V,} \mathrm{\frac{2.303RT}{F}=0.06)}
Option: 1 2.1544
Option: 2 1.11
Option: 3 7.15
Option: 4 3.14
 

As we have learnt, 

Nernst equation is given as 

\mathrm{E= E^0_{cell}-\frac{2.303RT}{nF}logQ}

Now, the chemical reaction occuring in the cell is given as 

\begin{array}{l}{\mathrm{Sn}+\mathrm{Pb}^{2+} \longrightarrow \mathrm{Sn}^{2+}+\mathrm{Pb}} \\ {0=0.01-\frac{0.06}{2} \log \left\{\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right\}} \\ {0.01=\frac{0.06}{2} \log \left[\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right\}} \\ {\frac{1}{3}=\log \left[\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right\} \Rightarrow \frac{\left[\mathrm{Sb}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}=10^{1 / 3}=2.1544}\end{array}

Hence, the option number (1) is correct.

View Full Answer(1)
Posted by

Kuldeep Maurya

The Gibbs energy change (in J) for the given reaction at \left [ Cu^{2+} \right ]=\left [ Sn^{2+} \right ]=1 \; M and 298 K is : Cu(s)+Sn^{2+}(aq.)\rightarrow Cu^{2+}(aq.)+Sn(s); \left ( E_{Sn^{2+}\mid Sn}^{0}=-0.16\; V, E_{Cu^{2+}\mid Cu}^{0}=0.34 V, \text {Take F=96500 C mol} ^{-1}\right )  
     
 

\mathrm{Cu}(\mathrm{s})+\mathrm{Sn}^{+2}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{+2}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s})

\begin{aligned} \mathrm{E}^{0} &=-0.16-0.34 \\ &=-0.50 \end{aligned}

\begin{aligned} \Delta G^{0} &=-n F E^{0} \\ &=-2 \times 96500 \times(-0.5) \\ &=+96500 \end{aligned}

\begin{aligned} \Delta G &=\Delta G^{0}+R T \ell n Q \\ &=96500+\frac{25}{3} \times 298 \times 2.303 \log (1) \\ \Delta G &=96500 \text { Joules } \end{aligned}

View Full Answer(1)
Posted by

avinash.dongre

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The equation that is incorrect is:
Option: 1 (\Lambda ^{^{\circ}}_{m})_{NaBr}-(\Lambda ^{^{\circ}}_{m})_{NaI}= (\Lambda ^{^{\circ}}_{m})_{KBr}-(\Lambda ^{^{\circ}}_{m})_{NaBr}
Option: 2 (\Lambda ^{^{\circ}}_{m})_{NaBr}-(\Lambda ^{^{\circ}}_{m})_{NaCl}=(\Lambda ^{^{\circ}}_{m})_{KBr}-(\Lambda ^{^{\circ}}_{m})_{KCl}
Option: 3 (\Lambda ^{^{\circ}}_{m})_{NaBr}-(\Lambda ^{^{\circ}}_{m})_{NaCl}=(\Lambda ^{^{\circ}}_{m})_{KBr}-(\Lambda ^{^{\circ}}_{m})_{KCl}
Option: 4 (\Lambda ^{^{\circ}}_{m})_{H_{2}O}=(\Lambda ^{^{\circ}}_{m})_{HCl}+(\Lambda ^{^{\circ}}_{m})_{NaOH}-(\Lambda ^{^{\circ}}_{m})_{NaCl}
 

\\\mathrm{(\Lambda ^0_m)_{NaBr}-(\Lambda ^0_m)_{NaI}= (\Lambda ^0_m)_{KBr}-(\Lambda ^0_m)_{NaBr}} \\\\\mathrm{(\Lambda ^0_m)_{Na}+(\Lambda ^0_m)_{Br}- (\Lambda ^0_m)_{Na}-(\Lambda ^0_m)_{I}= (\Lambda ^0_m)_{K}+(\Lambda ^0_m)_{Br} -(\Lambda ^0_m)_{Na}+(\Lambda ^0_m)_{Br}} \\ \\

 

Both sides are not equal.

Therefore, Option(1) is correct.

View Full Answer(1)
Posted by

Kuldeep Maurya

Potassium chlorate is prepared by the electrolysis of KCl in basic solution \mathrm{Cl}^{-}+6 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-} If only 60% of current utilized in the reaction, the time (hr) required to produce 10 g of KClO_{3} using a current of 2A is ___ \left(F=96500 \mathrm{C} \mathrm{mol}^{-},\: \mathrm{KClO}_{3}=122 \mathrm{g} \cdot \mathrm{mol}^{-}\right)  
 

The reaction occurs as follows:

\mathrm{Cl^{-}\: +\: 6OH^{-}\: \rightarrow \: ClO_{3}^{-}\: +\: 3H_{2}O\: +\: 6e^{-}}

Current efficiency = 60%

Now, moles of KClO_{3}= \frac{10}{122.5}

Thus, moles of e^{-}= \frac{60}{122.5} (assuming 100% efficiency)

Thus, actual moles of e^{-}= \frac{100}{122.5}

\mathrm{\therefore \: \frac{2\: x\: t}{96500}\: =\: \frac{100}{122.5}}

Thus, t = 39387.76 sec. = 10.94 hours.

Thus, time required is approximately 11 hours.

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The redox reaction among the following is:
Option: 1 Formation of ozone from atmospheric oxygen in presence of sunlight
Option: 2 Redox of H_{2}SO_{4} with NaOH 
Option: 3 Combination of dinitrogen with dioxygen of 2000K.
Option: 4 Reaction of [Co(H_{2}O)_{6} ]Cl_{3}  with AgNO_{3}
 

showing redox reaction, both oxidation and reduction.

Therefore, Option(3) is correct.

View Full Answer(1)
Posted by

Ritika Jonwal

The oxidation states of iron atoms in compounds (A), (B) and (C), respectively,  are x, y and z. The sum of x, y and z is______.
 

 

View Full Answer(1)
Posted by

Deependra Verma

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img