Get Answers to all your Questions

header-bg qa
Filter By

All Questions

The value of  \cos ^{3}\left ( \frac{\pi }{8} \right )\cdot \cos \left ( \frac{3\pi }{8} \right )+\sin ^{3}\left ( \frac{\pi }{8} \right )\cdot \sin \left ( \frac{3\pi }{8} \right )  is :
Option: 1 \frac{1}{4}
 
Option: 2 \frac{1}{2\sqrt{2}}
 
Option: 3 \frac{1}{2}
 
Option: 4 \frac{1}{\sqrt{2}}
 
 

 

 

Trigonometric Identities -

Trigonometric Identities-

These identities are the equations that hold true regardless of the angle being chosen.

 

\\\mathrm{\sin^2\mathit{t}+\cos^2\mathit{t}=1}\\\mathrm{1+\tan^2\mathit{t}=\sec^2\mathit{t}}\\\mathrm1+{\cot^2\mathit{t}=\csc^2\mathit{t}}\\\mathrm{\tan \mathit{t}=\frac{\sin \mathit{t}}{\cos \mathit{t}},\;\;\cot \mathit{t}=\frac{\cos\mathit{t}}{\sin\mathit{t}}}

-

 

 

 

Allied Angles (Part 1) -

Allied Angles (Part 1)

Two angles or numbers are called allied iff their sum or difference is a multiple of π/2   

  • sin (900 - θ) = cos (θ)

  • cos (900 - θ) = sin (θ)

  • tan (900 - θ) = cot (θ)

  • csc (900 - θ) = sec (θ)          

  • sec (900 - θ) = csc (θ)

  • cot (900 - θ) = tan (θ)

 

  • sin (900 + θ) = cos (θ)

  • cos (900 + θ) = - sin (θ)

  • tan (900 + θ) = - cot (θ)

  • csc (900 + θ) = sec (θ)          

  • sec (900 + θ) = - csc (θ)

  • cot (900 + θ) = - tan (θ)

-

 

 

 

\\\cos ^3\:\frac{\pi }{8}\cos \frac{3\:\pi }{8}+\sin ^3\frac{\pi }{8}\:\sin \frac{3\:\pi }{8}\\\sin\left ( \frac{\pi}{2}-\frac{3\pi}{8} \right )=\cos\left ( \frac{3\pi}{8} \right )=\sin\left ( \frac{\pi}{8} \right )\\\\\\\cos ^3\:\frac{\pi }{8}\sin \frac{\:\pi }{8}+\sin ^3\frac{\pi }{8}\:\cos \frac{\:\pi }{8}\\\sin\frac{\pi}{8}\cos\frac{\pi}{8}\left ( \cos ^2\:\frac{\pi }{8}+\sin ^2\:\frac{\pi }{8} \right )\\\frac{1}{2}\left ( 2\:\sin \frac{\pi }{8}\cos \:\frac{\pi \:}{8} \right )=\frac{1}{2}\:\sin \frac{2\pi }{8}=\frac{1}{2\sqrt2}

View Full Answer(1)
Posted by

avinash.dongre

The strength of an aqueous NaOH solution is most accurately determined by titrating:
(Note: consider that an appropriate indicator is used)
Option: 1 Aq.NaOH in a pipette and aqueous oxalic acid in a burette
Option: 2 Aq.NaOH in a volumetric flask and concentrated H_{2}SO_{4} in a conical flask
Option: 3 Aq.NaOH in a burette and concentrated H_{2}SO_{4} in a conical flask
Option: 4 Aq.NaOH in a burette and aqueous oxalic acid in a conical flask

As we have learnt,

To calculate the strength of NaOH, it is titrated against oxalic acid. For this purpose, NaOH is kept in a burette and oxalic acid in a conical flask.

Therefore, Option(4) is correct.

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If \frac{\sqrt{2}\sin \alpha }{\sqrt{1+\cos 2\alpha }}=\frac{1}{7} and \sqrt{\frac{1-\cos 2\beta }{2}}=\frac{1}{\sqrt{10}}, \alpha ,\beta\; \epsilon \left ( 0,\frac{\pi }{2} \right ), then \tan \left ( \alpha +2\beta \right ) is equal to ________.
Option: 1 0  
Option: 2 1
Option: 3 0.5
Option: 4 2
 

 

 

Trigonometric Identities -

Trigonometric Identities-

These identities are the equations that hold true regardless of the angle being chosen.

 

\\\mathrm{\sin^2\mathit{t}+\cos^2\mathit{t}=1}\\\mathrm{1+\tan^2\mathit{t}=\sec^2\mathit{t}}\\\mathrm1+{\cot^2\mathit{t}=\csc^2\mathit{t}}\\\mathrm{\tan \mathit{t}=\frac{\sin \mathit{t}}{\cos \mathit{t}},\;\;\cot \mathit{t}=\frac{\cos\mathit{t}}{\sin\mathit{t}}}

-

 

 

 

Double Angle Formula and Reduction Formula -

Double Angle Formula and Reduction Formula

\begin{aligned} \sin (2 \theta) &=2 \sin \theta \cos \theta \\&=\frac{2\tan\theta}{1+\tan^2\theta} \\\cos (2 \theta) &=\cos ^{2} \theta-\sin ^{2} \theta \\ &=1-2 \sin ^{2} \theta \\ &=2 \cos ^{2} \theta-1\\&=\frac{1-\tan^2\theta}{1+\tan^2\theta} \\ \tan (2 \theta) &=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \end{aligned}

 

\begin{aligned} \tan (\alpha+\beta) &=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\ \tan (\theta+\theta) &=\frac{\tan \theta+\tan \theta}{1-\tan \theta \tan \theta} \\ \tan (2 \theta) &=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \end{aligned}

-

\\\frac{\sqrt{2} \sin \alpha}{\sqrt{2} \cos \alpha}=\frac{1}{7}\\\tan\alpha=\frac{1}{7}\\\sin\beta=\frac{1}{\sqrt{10}}\\\tan\beta=\frac{1}{\sqrt{3}}\\\tan 2 \beta=\frac{2 \cdot \frac{1}{3}}{1-\frac{1}{9}}=\frac{\frac{2}{3}}{\frac{8}{9}}=\frac{3}{4}\\\tan (\alpha+2 \beta)=\frac{\tan \alpha+\tan 2 \beta}{1-\tan \alpha \tan 2 \beta}=1

Correct Option (2)

View Full Answer(1)
Posted by

vishal kumar

Reaction of an inorganic sulphite X with dilute H_{2}SO_{4} generates compound Y.Reaction of Y with \mathrm{NaOH} gives X. Further, the reaction of X with Y and water affords compound Z. Y and Z, respectively, are :
Option: 1 SO_{2}\; \; and \; \; Na_{2}SO_{3}
Option: 2 SO_{3}\; \; and \; \; NaHSO_{3}
Option: 3 SO_{2}\; \; and \; \; NaHSO_{3}
Option: 4 S\; \; and \; \; Na_{2}SO_{3}

The reaction will be-

 

So, Y and Z, respectively, are SO_{2}\; \; and \; \; NaHSO_{3}

Therefore, the correct option is (3).

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

If you spill a chemical toilet cleaning liquid on your hand, your first aid would be:
Option: 1 aqueous NH3 
Option: 2  gaseous NaHCO3
Option: 3 aqueous NaOH
Option: 4 Vinegar

Chemical toilet cleaning liquid contains acid and hence the first aid would be a weak base like NaHCO3.

Therefore, Option(2) is correct.

View Full Answer(1)
Posted by

Kuldeep Maurya

Two poles, A B of length a metres and C D of length a+b(b \neq a) metres are erected at the same horizontal level with bases at \mathrm{B}$ and $\mathrm{D}. If \mathrm{BD}=x and \tan \angle \mathrm{ACB}=\frac{1}{2}, then :
Option: 1 x^{2}-2 \mathrm{a} x+\mathrm{a}(\mathrm{a}+\mathrm{b})=0
Option: 2 x^{2}+2(\mathrm{a}+2 \mathrm{~b}) x-\mathrm{b}(\mathrm{a}+\mathrm{b})=0
Option: 3 x^{2}+2(\mathrm{a}+2 \mathrm{~b}) x+\mathrm{a}(\mathrm{a}+\mathrm{b})=0
Option: 4 x^{2}-2 \mathrm{a} x+\mathrm{b}(\mathrm{a}+\mathrm{b})=0

\angle ACB= \angle ACD-\angle BCD\\

\Rightarrow \tan\angle ACB=\tan\left ( \angle ACD-\angle BCD \right )\\

\tan\angle ACD= \frac{x}{b}, \tan\angle BCD= \frac{x}{a+b}\\

\Rightarrow \frac{1}{2}= \frac{\frac{x}{b}-\frac{x}{a+b}}{1+\frac{x}{b}\cdot \frac{x}{a+b}}\\

\Rightarrow \frac{1}{2}= \frac{\left ( a+b \right )x-bx}{b\left ( a+b \right )+x^{2}}\\

\Rightarrow x^{2}-2ax+b\left ( a+b \right )= 0

View Full Answer(1)
Posted by

Kuldeep Maurya

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The addition of dilute \mathrm{NaOH}$ to $\mathrm{Cr}^{3+} salt solution will give :
Option: 1 Precipitate of \mathrm{Cr}_{2} \mathrm{O}_{3} \left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}
Option: 2 Precipitate of \mathrm{Cr}(\mathrm{OH})_{3}
Option: 3 Precipitate of \left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}
Option: 4 A solution of \left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}

Addition of dilute \mathrm{NaOH} to a salt solution of \mathrm{Cr^{3+}} will lead to the formation of a precipitate of hydrated chromium (III) oxide.

\mathrm{Cr}^{3+}+\underset{\mathrm{dil}}{\mathrm{NaOH}} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}

Hence, the correct answer is option (1)

View Full Answer(1)
Posted by

sudhir.kumar

Acidic ferric chloride solution on treatment with excess of potassium ferrocyanide gives a Prussian blue coloured colloidal species. It is :
Option: 1 \mathrm{HFe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]
Option: 2 \mathrm{K}_{5} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}
Option: 3 \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}
Option: 4 \mathrm{KFe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]

\mathrm{Fe^{3+}} ions react with excess of potassium ferrocyanide to form \mathrm{KFe\left [ Fe\left ( CN \right )_{6} \right ]}.

The reaction is given below:

\mathrm{\underset{excess}{K_{4}\left [ Fe\left ( CN \right ) _{6}\right ]}+Fe^{3+}\rightarrow KFe\left [ Fe\left ( CN \right )_{6} \right ]}

Hence,the correct answer is Option (4)

View Full Answer(1)
Posted by

sudhir.kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Match List - I with List - II :
List-I (Metal Ion) List-II (Group in Qualitative analysis)
(a) \mathrm{Mn}^{2+} (i) Group - III
(b) \mathrm{As}^{3+} (ii) Group - IIA
(c) \mathrm{Cu}^{2+} (iii) Group - IV
(d) \mathrm{Al}^{3+} (iv) Group - IIB
Choose the most appropriate answer from the options given below :
Option: 1 (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
Option: 2 (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
Option: 3 (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
Option: 4 (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)

The correct match of basic radicalsand their groups in Qualitative analysis is given below

\mathrm{(a)Mn^{2+}:Group\; I V (iii)}

\mathrm{(b)As^{3+}:Group\; IIB(iv)}

\mathrm{(c)Cu^{2+}:Group\; II A(ii)}

\mathrm{(d)Al^{3+}: Group (III)(i )}

Hence the correct answer is option (1)

View Full Answer(1)
Posted by

sudhir.kumar

Consider the sulphides \mathrm{HgS}$, $\mathrm{PbS}$, $\mathrm{CuS}_{}, \mathrm{Sb}_{2} \mathrm{~S}_{3},\mathrm{As}_{2} \mathrm{~S}_{3} and \mathrm{CdS}. Number of these sulphides soluble in 50 \% \mathrm{HNO}_{3} is_________.
 

The sulphide which are soluble in \mathrm{50% \ HNO_{3}} are \mathrm{PbS,\ CuS,\ As_{2}S_{3},\ CdS}

Sulphides insoluble in \mathrm{50%\ HNO_{3}} are \mathrm{HgS} and \mathrm{Sb_{2}S_{3}}

Hence, the correct answer is 4

View Full Answer(1)
Posted by

sudhir.kumar

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img