Get Answers to all your Questions

header-bg qa
Filter By

All Questions

 An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant.  If during  this process the relation of pressure P and volume V is given by PVn=constant,  then n is given by (Here CP and CV are molar specific heat at constant pressure and constant volume, respectively)
Option: 1  n=\frac{C_{p}}{C_{v}}


Option: 2  n=\frac{C-C_{p}}{C-C_{v}}


Option: 3 n=\frac{C_{p}-C}{C-C_{v}}

Option: 4  n=\frac{C-C_{v}}{C-C_{p}}
 

For a polytropic preocess

c=c_{v}+\frac{R}{1-n} \: or \: \frac{R}{1-n} = c-c_{v}

\Rightarrow 1-n=\frac{R}{c-c_{v}} \: or\: n=1-\frac{R}{c-c_{v}}

\Rightarrow n=\frac{c-\left ( c_{v}+R \right )}{c-c_{v}} = \frac{c-c_{p}}{c-c_{v}}

View Full Answer(1)
Posted by

Ritika Jonwal

The temperature of an open room of volume 30 m3 increases from 170C to 270C due to the sunshine.  The atmospheric pressure in the room remains 1×105 Pa. If   n_{i}  and  n_{f} are the number of molecules in the room before and after heating, then n_{f}-n_{i}will be :  
Option: 1 −1.61×1023  
Option: 2  1.38×1023  
Option: 3  2.5×1025  
Option: 4 −2.5×1025  
 

 

 

 PV = nRT                                    

\Rightarrow\ \; n_{i}=\frac{PV}{RT_{i}},\ \; n_{f}=\frac{PV}{RT_{f}}

\Rightarrow\ \; n_{f}-n_{i}=\frac{PV}{R} \left(\frac{1}{T_{f}}-\frac{1}{T_{i}} \right )=\frac{10^{5}\times 30}{8.31}\times\left(\frac{1}{300}-\frac{1}{290} \right )

    n_{f}-n_{i}=\frac{10^{5}\times 30}{8.31}\times\frac{-10}{300\times 290}=\frac{-10^{5}}{290\times 8.31}

change in Number of molecules =\frac{-10^{5}\times6.023\times10^{23}}{290\times 8.31}=-2.5\times 10^{25}

Correct option is 4.

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The plot that depicts the behavior of the mean free time \tau (time between two successive collisions) for the molecules of an ideal gas, as a function of temperature (T), qualitatively, is: (Graphs are schematic and not drawn to scale) 
Option: 1

Option: 2 

Option: 3 

Option: 4 
 

As relaxation time is given as

\tau =\frac{\lambda}{V_{rms}}

where λ=mean free path

and V_{rms}\propto \sqrt{T}

while   \boldsymbol{ \lambda=\frac{1}{\sqrt{2} \pi N d^{2}}}

where N=number of molecules per unit volume

So keeping all the other quantities are constant.

we get \tau \ \ \alpha \ \frac{1}{\sqrt{T}}

So the correct graph is given in option 2

View Full Answer(1)
Posted by

vishal kumar

Two moles of an ideal gas with \frac{C_p}{C_v}=\frac{5}{3} are mixed 3 moles of another ideal gas with \frac{C_p}{C_v}=\frac{4}{3}. The value of \frac{C_p}{C_v} for the mixture is:-  
Option: 1 1.50
Option: 21.45
Option: 3 1.47    
Option: 4 1.42
 

For ideal gas:- C_p-C_v=R

For first case:-

\frac{C_{p1}}{C_{v1}}=\frac{5}{3} \ and \ C_{p1}-C_{v1}=R

C_{p1}=\frac{5}{3}{C_{v1}} \ and \ \frac{5}{3}{C_{v1}} -C_{v1}=R\Rightarrow \frac{2}{3}C_{v1}=R\Rightarrow C_{v1}=\frac{3}{2}R

So, C_{p1}=\frac{5}{2}R

For second case:-

\frac{C_{p2}}{C_{v2}}=\frac{4}{3} \ and \ C_{p2}-C_{v2}=R

C_{p2}=\frac{4}{3}{C_{v2}} \ and \ \frac{4}{3}{C_{v2}}-C_{v2}=R\Rightarrow C_{v2}=3R and C_{p2}=4R

Now, Y_{mix}=\frac{n_1C_{p1}+n_2C_{p2}}{n_1C_{v1}+n_2C_{v2}}=\frac{2\times\frac{5}{2}R+3\times4R}{2\times\frac{3}{2}R+3\times3R}= 1.417 = 1.42

So option (4) is correct. 

View Full Answer(1)
Posted by

Ritika Jonwal

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Two gases-argon (atomic radius 0.07 nm, atomic weight 40) and xenon ( atomic radius 0.1 nm, atomic weight 140) have the same number density and are at the same temperature. The ratio of their respective mean free times is closest to :
Option: 1 4.67
Option: 2  2.3
Option: 3  1.83
Option: 4 1.07
 

 

 

Mean free time =\frac{1}{\sqrt{2n}_{n}d^{2}v_{ms}}

\frac{t_{Ar}}{t_{xe}}=\frac{d^{2}_{xe}}{d^{2}_{Ar}}\times \sqrt{\frac{m_{1}}{m_{2}}}

=\left ( \frac{0.1}{0.07} \right )^{2}\times \sqrt{\frac{40}{140}}

=\left ( \frac{10}{7} \right )^{2}\times \sqrt{\frac{2}{7}}=1.07

 

View Full Answer(1)
Posted by

avinash.dongre

Consider a mixture of n moles of helium gas and 2n moles of oxygen gas (molecules taken to be rigid) as an ideal gas. Its Cp/Cv value will be :
Option: 1 40/27
Option: 2 23/15
Option: 3 19/13
Option: 4 67/45
 

For monoatomic gas (He)

c_v=\frac{3R}{2}, c_p=\frac{5R}{2}

For diatomic gas (O2)

c_v=\frac{5R}{2}, c_p=\frac{7R}{2}

\\\gamma_{\text {mixure }}=\frac{C_{p_{m i x}}}{C_{v_{m x}}}=\frac{\left(n_{1} C_{p_{1}}+n_{2} C_{p_{2}}\right)}{\left(n_{1} C_{v_{1}}+n_{2} C_{v_{2}}\right)}\\\\=\frac{n\frac{5}{2}R+2n\frac{7}{2}R}{n\frac{3}{2}R+2n\frac{5}{2}R}=\frac{19}{13}

Hence the correct option is (3).

View Full Answer(1)
Posted by

vishal kumar

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Under an adiabatic process, the volume of an ideal gas gets doubled. Consequently the mean collision time between the gas molecule changes from \tau_{1}  to \tau_{2} . If  \frac{C_{p}}{C_{v}}=\gamma for this gas then a good estimate for \frac{\tau_{2}}{\tau_{1}}  is 
Option: 1 \left(\frac{1}{2}\right)^{(\gamma+1)/{2}}  
  
Option: 2 \frac{1}{2}

Option: 3 \left ( \frac{1}{2} \right )^{\gamma }  

Option: 4 (2)^{{(1+\gamma})/{2}}
 

As, relaxation time= \tau \ \ \alpha \ \ \frac{V}{\sqrt{T}}

and using PV^{\gamma }=Const gives \mathrm{T} \propto \frac{1}{\mathrm{V}^{\gamma-1}}

\begin{array}{l}{\tau \propto V^{1+{(\gamma-1)}/{2}}} \\ {\tau \propto V^{{(1+\gamma)}/{2}}}\end{array}

\begin{aligned} &\frac{\tau_{2}}{\tau_{\mathrm{1}}}=\left(\frac{2 \mathrm{~V}}{\mathrm{~V}}\right)^{{(1+\gamma})/{2}} \\ &\frac{\tau_{\mathrm{2}}}{\tau_{\mathrm{1}}}=(2)^{(1+\gamma) / 2} \end{aligned}

View Full Answer(1)
Posted by

Ritika Jonwal

Consider two ideal diatomic gases A and B at same temperature T. Molecules of the gas A are rigid and have a mass m. Molecules of the gas B have an additional vibrational mode and have a mass \frac{m}{4}. The ratio of the specific heats \left(C^A_V \textup{ and } C_V^B \right ) of gas A and B respectively is:
Option: 1 5:9
Option: 2 7:9
Option: 3 3:5
Option: 4 5:7
 

Molar heat capacity of A at constant volume =\frac{5R}{2}

Molar heat capacity of B at constant volume  =\frac{7R}{2}

Dividing both \frac{(C_V)_A}{C_V)_B}=\frac{5}{7}

Hence the correct option is (4). 

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The RMS speeds of the molecules of Hydrogen , Oxygen and Carbon dioxide at the same temperature are V_{H},V_{O}\, and\, V_{C} respectively then:
Option: 1 V_{C}> V_{O}>V_{H}
Option: 2 V_{H}= V_{O}> V_{C}
Option: 3 V_{H}> V_{O}> V_{C}
Option: 4 V_{H}= V_{O}= V_{C}

V_{rms}= \sqrt{\frac{3RT}{M}}
M_{Hydrogen}= 2\, amu
M_{Oxygen}= 32\, amu
M_{CO_{2}}= 44\, amu
V_{H}> V_{O}> V_{C}
The correct option is (3)

View Full Answer(1)
Posted by

vishal kumar

The temperature of equal masses of three ifferent liquids x,y and z are 10^{\circ}C,20^{\circ}C \, and\, 30^{\circ}C respectively.The temperature of mixture when x is mixed with y is 16^{\circ}C and that when y is mixed with z is 26^{\circ}C, The temperature of mixture when x and z are mixed will be :
 
Option: 1 25\cdot 62^{\circ}C
Option: 2 20\cdot 28^{\circ}C
Option: 3 28\cdot 32^{\circ}C
Option: 4 23\cdot 84^{\circ}C

T_{mix}= \frac{n_{1}T_{1}+n_{2}T_{2}}{n_{1}+n_{2}}
T_{x}= 10^{\circ}C= 283\, k
T_{y}= 20^{\circ}C= 293\, k
T_{z}= 30^{\circ}C= 303\, k
For x & y mixture ,
T_{1}= \frac{n_{x}T_{x}+n_{y}T_{y}}{n_{x}+n_{y}}
289= \frac{\frac{m_{x}T_{x}}{M_{x}}+\frac{m_{y}T_{y}}{M_{y}}}{\frac{m_{x}}{M_{x}}+\frac{m_{y}}{M_{y}}}
289= \frac{\frac{283}{M_{x}}+\frac{293}{M_{y}}}{\frac{1}{M_{x}}+\frac{1}{M_y}}\rightarrow \left ( 1 \right )
Mixture of y & Z
299= \frac{\frac{293}{M_{y}}+\frac{303}{M_{z}}}{\frac{1}{M_{y}}+\frac{1}{M_z}}\rightarrow \left ( 2 \right )
Mixture of x & z
T_{3}= \frac{\frac{283}{M_{x}}+\frac{303}{M_{z}}}{\frac{1}{M_{x}}+\frac{1}{M_z}}\rightarrow \left ( 3 \right )
From eqn (1)
\frac{289}{M_{x}}+\frac{289}{M_{y}}= \frac{283}{M_{x}}+\frac{213}{M_{y}}
6M_{y} = 4M_{x}
3M_{y} = 2M_{x}\rightarrow \left ( 4 \right )
6M_{z} = 4M_{y}
3M_{z} = 2M_{y}\rightarrow \left ( 5 \right )
3\times \frac{3M_{z}}{2} = 2M_{x}
9 M_{z} = 4M_{x}\rightarrow \left (6 \right )
T_{3}= \frac{\frac{283}{\frac{9}{4}M_{z}}+\frac{303}{M_{z}}}{\frac{1}{\frac{9}{4}M_{z}}+\frac{1}{M_{z}}}= \frac{\frac{4\times 283}{9}+\frac{303\times 9}{9}}{\frac{4}{9}+\frac{9}{9}}
= \frac{4\times283+303\times9}{13}= 296\cdot 84 k
T_{3}= 23\cdot 84\degree C
The correct option is (4)

View Full Answer(1)
Posted by

vishal kumar

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img