Get Answers to all your Questions

header-bg qa
Filter By

All Questions

A random variable X has the following probability distribution:          X: \: \: 1\; \; \: \: 2\; \;\: \: \: \: 3\; \; \: \: \: \: \: 4\: \: \: \; \; \: \: 5 P(X): \;K^{2}\; \; 2K\; \; K\; \; 2K\; \; 5K^{2} Then P(X>2) is equal to: 
Option: 1 \frac{7}{12}
Option: 2 \frac{23}{36}
Option: 3 \frac{1}{36}
Option: 4 \frac{1}{6}
 

Option 2

View Full Answer(10)
Posted by

ritik.gaur

Let a_{n} be the nth term of a G.P. of positive terms. If \sum_{n=1}^{100}a_{2n+1}=200\: \: and\: \: \sum_{n=1}^{100}a_{2n}=100,\: \: then\: \sum_{n=1}^{200}a_n is equal to :   
Option: 1 300
Option: 2 175
Option: 3 225
Option: 4 150
 

150

View Full Answer(5)
Posted by

Nalla mahalakshmi

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If one end of a focal chord AB of the parabola y^{2}=8x is at A\left ( \frac{1}{2},-2 \right ), then the equation of the tangent to it at B is :
Option: 1 x+2y+8=0
Option: 2 2x-y-24=0
Option: 3 x-2y+8=0
Option: 4 2x+y-24=0
 

D

View Full Answer(2)
Posted by

Shabareesh

If \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{xy}{x^{2}+y^{2}};y(1)=1; then a value of x satisfying y(x)=e is :   
Option: 1 \sqrt{3}\: e
 
Option: 2 \frac{1}{2}\sqrt{3}\: e
 
Option: 3 \sqrt{2}\: e
 
Option: 4 \frac{e}{\sqrt{2}}
 
 

√3e

View Full Answer(4)
Posted by

Nalla mahalakshmi

Crack NEET with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
neet_ads

If x=\sum_{n=0}^{\infty }(-1)^{n}\tan ^{2n}\theta \: \: and\: \: y=\sum_{n=0}^{\infty }\cos ^{2n}\theta , for 0<\theta < \frac{\pi }{4}, then
Option: 1 y(1+x)=1
Option: 2 x(1-y)=1
Option: 3 y(1-x)=1
Option: 4 x(1+y)=1
 

x=\sum_{n=0}^{\infty}(-1)^{n} \tan ^{2 n} \theta=1-\tan^2\theta+\tan^4\theta..........

y=\sum_{n=0}^{\infty} \cos ^{2 n} \theta=1+\cos^2\theta+\cos^4\theta......

Use \text S_{\infty}=\frac{1}{1-r}

{x=\frac{1}{1+\tan ^{2} \alpha}=\cos ^{2} \theta} \\ {y=\frac{1}{1-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta}}

\Rightarrow (1-x)= \sin ^{2} \theta

\Rightarrow y(1-x)=1

Correct Option (3)

View Full Answer(1)
Posted by

avinash.dongre

If z be a complex number satisfying \left | Re\left ( z \right ) \right |+\left | Im(z) \right |=4, then \left | z \right | cannot be : 
Option: 1 \sqrt{7}
 
Option: 2 \sqrt{\frac{17}{2}}
 
Option: 3 \sqrt{10}
 
Option: 4 \sqrt{8}
 
 

Option d

 

View Full Answer(3)
Posted by

Shravani.D.K

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
jee_ads

The length of the minor axis (along y-axis) of an ellipse in the standard form is \frac{4}{\sqrt{3}}. If this ellipse touches the line, x+6y=8; then its eccentricity is : 
Option: 1 \frac{1}{2}\sqrt{\frac{5}{3}}
 
Option: 2 \frac{1}{2}\sqrt{\frac{11}{3}}
 
Option: 3 \sqrt{\frac{5}{6}}
 
Option: 4 \frac{1}{3}\sqrt{\frac{11}{3}}
 
 

 

 

What is Ellipse? -

Ellipse

Standard Equation of Ellipse:

The standard form of the equation of an ellipse with center (0, 0) and major axis on the x-axis is

\mathbf{\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{y}^{2}}{\mathbf{b}^{2}}=1} \quad \text { where }, \mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)_{(\mathrm{a}>\mathrm{b})}

 

  1. a > b 

  2.  the length of the major axis is 2a 

  3.  the coordinates of the vertices are (±a, 0) 

  4.  the length of the minor axis is 2b 

  5.  the coordinates of the co-vertices are (0, ±b)

-

 

 

Equation of Tangent of Ellipse in Parametric Form and Slope Form -

 

Slope Form:

\\ {\text { The equation of tangent of slope m to the ellipse, } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { are }} \\ {y=m x \pm \sqrt{a^{2} m^{2}+b^{2}} \text { and coordinate of point of contact is }} \\ {\left(\mp \frac{a^{2} m}{\sqrt{a^{2} m^{2}+b^{2}}}, \pm \frac{b^{2}}{\sqrt{a^{2} m^{2}+b^{2}}}\right)}

-

 

 

 

\\\begin{array}{l}{2 \mathrm{b}=\frac{4}{\sqrt{3}} \quad \Rightarrow \quad \mathrm{b}=\frac{2}{\sqrt{3}}} \\ {\text { Equation of tangent } \equiv \mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{m}^{2}+\mathrm{b}^{2}}}\end{array}\\\text { comparing with } \equiv y=\frac{-x}{6}+\frac{4}{3}\\

\\ {\mathrm{m}=\frac{-1}{6} \text { and } \mathrm{a}^{2} \mathrm{m}^{2}+\mathrm{b}^{2}=\frac{16}{9}} \\ {\Rightarrow \quad \frac{\mathrm{a}^{2}}{36}+\frac{4}{3}=\frac{16}{9}} \\ {\Rightarrow \quad \frac{\mathrm{a}^{2}}{36}=\frac{16}{9}-\frac{4}{3}=\frac{4}{9}} \\ {\Rightarrow \quad a^{2}=16} \\ {\mathrm{e}=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}}\\e=\sqrt{\frac{11}{12}}

Correct Option (2)

View Full Answer(1)
Posted by

avinash.dongre

If p\rightarrow \left ( p\: \wedge \sim q \right ) is false, then the truth values of p and q are respectively :   
Option: 1 F, T
Option: 2 T, F 
Option: 3 F, F 
Option: 4 T, T 

 

 

Relation Between Set Notation and Truth Table -

Sets can be used to identify basic logical structures of statements. Statements have two fundamental roles either it is true or false.

Let us understand with an example of two sets p{1,2} and q{2,3}.

\begin{array}{|c|c|c|}\hline\quad p\vee q\quad & \quad p\cup q\quad&\quad 1,2,3\quad \\ \hline p\wedge q& p\cap q&2 \\ \hline p^c& \sim p & 3,4 \\ \hline q^c& \sim q&1,4 \\ \hline\end{array}

Using this relation we get

\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline \text{Element } & \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}q\mathrm{\;\;\;}&\mathrm{\;\;\;\;\;}\sim p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}\sim q\mathrm{\;\;\;} &\mathrm{\;\;\;}p\wedge q\mathrm{\;\;}&\mathrm{\;\;}p\vee q\mathrm{\;\;}&\sim\left (p\wedge q \right )\mathrm{\;\;}&\sim p\wedge\sim q\mathrm{\;\;} \\ \hline \hline 1& \mathrm{T}&\mathrm{F} & \mathrm{F} &\mathrm{T}&\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F} \\ \hline2& \mathrm{T}&\mathrm{T} & \mathrm{F} &\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F}&\mathrm{T} \\ \hline 3& \mathrm{F}&\mathrm{T} & \mathrm{T} &\mathrm{F}&\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F} \\ \hline4& \mathrm{F}&\mathrm{F} & \mathrm{T} &\mathrm{T}&\mathrm{F}&\mathrm{F}&\mathrm{T}&\mathrm{F} \\ \hline\end{array}

-

 

 

 

Practise Session - 2 -

Q1. Write the truth table for the following statement pattern:
        \\ \mathrm{1.\;\;\;\sim(p \vee((\sim q \Rightarrow q) \wedge q))}\\\mathrm{2.\;\;\;(p\wedge q)\vee(\sim r)}\\

-

 

 

 

 

\begin{array}{c|c|c}{\mathbf{p}} & {\mathbf{q}} & {(\mathbf{p} \rightarrow(\mathbf{p} \mathbf{\Lambda}-\mathbf{q}))} \\ \hline F & {F} & {\mathbf{T}} \\ \hline F & {T} & {\mathbf{T}} \\ \hline \mathbf{T} & {F} & {\mathbf{T}} \\ \hline \mathbf{T} & {T} & {F}\end{array}

Correct Option (4)

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The following system of linear equations  7x+6y-2z=0 3x+4+2z=0 x-2y-6z=0, has 
Option: 1 infinitely many solutions, (x,y,z) satisfying y=2z.
Option: 2 infinitely many solutions, (x,y,z) satisfying x=2z.
Option: 3 no solution
Option: 4 only the trivial solution. 
 

 

 

System of Homogeneous linear equations -

\\\mathrm{Let,} \\\mathrm{a_1x+b_1y +c_1z=0\;\;\; ...(i)} \\\mathrm{a_2x+b_2y +c_2z=0\;\;\; ...(ii)} \\\mathrm{a_3x+b_3y +c_3z=0\;\;\; ...(iii)} \\\mathrm{be \; three\; homogeneous\; equation} \\\mathrm{and \; let\; \Delta = \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}}

 

If ? ≠ 0, then x= 0, y = 0, z = 0 is the only solution of the above system. This solution is also known as a trivial solution.

If ? = 0, at least one of x, y and z are non-zero. This solution is called a non-trivial solution.

Explanation: using equation (ii) and (iii), we have 

 

\\\mathrm{\frac{x}{b_2c_3-b_3c_2} = \frac{y}{c_2a_3-c_3a_2}=\frac{z}{a_2b_3-a_3b_2}} \\\\\mathrm{or \;\; \frac{x}{\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}}=\frac{y}{\begin{vmatrix} c_2 &a_2 \\ c_3 & a_3 \end{vmatrix}} = \frac{z}{\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} = k (say \neq 0)} \\\mathrm{\therefore x = k\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}, y = k\begin{vmatrix} c_2& a_2\\ c_3 & a_3 \end{vmatrix} \; and \; z = k\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} \\\mathrm{putting\; these\; value\; in \; equation \; (i), we\; have} \\\mathrm{a_1\left \{ k\begin{vmatrix} b_2 & c_2\\ b_3 & c_3 \end{vmatrix} \right \}+b_1\left \{ k\begin{vmatrix} c_2 & a_2\\ c_3 & a_3 \end{vmatrix} \right \}+c_1\left \{ \begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix} \right \}=0}

 

\\\mathrm{\Rightarrow a_1\begin{vmatrix} b_2 &c_2 \\ b_3 & c_2 \end{vmatrix}-b_1\begin{vmatrix} a_2 & c_2\\ a_3 &c_3 \end{vmatrix}+c_1\begin{vmatrix} a_2 &b_2 \\ a_3 &b_3 \end{vmatrix} = 0 \;\;\;[\because \; k \neq 0]} \\\mathrm{or \;\; \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} = 0 \; or \; \Delta = 0}

This is the condition for a system have Non-trivial solution.

-

 

 

\begin{aligned} &(1)\;\;7 x+6 y-2 z=0\\ &(2)\;\;3 x+4 y+2 z=0\\ &(3)\;\;x-2 y-6 z=0 \end{aligned}

\left|\begin{array}{ccc}{7} & {6} & {-2} \\ {3} & {4} & {2} \\ {1} & {-2} & {-6}\end{array}\right| =7(-20)-6(-20)-2(-10)=-140+120+20=0

so infinite non-trivial solution exist

now equation (1) + 3 equation (3)

10x - 20z = 0

x = 2z

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

Given : f(x)=\left\{\begin{matrix} x, &0\leq x< \frac{1}{2} \\ \frac{1}{2}, &x=\frac{1}{2} \\ 1-x, &\frac{1}{2} < x\leq 1 \end{matrix}\right.  and g(x)=\left ( x-\frac{1}{2} \right )^{2},\: x\epsilon \textbf{R}. Then the area (in sq. units) of the region bounded b the curves, y=f(x)  and y=g(x) between the lines, 2x=1\: \: \: and\: \: \: 2x=\sqrt{3}, is : 
Option: 1 \frac{\sqrt{3}}{4}-\frac{1}{3}
 
Option: 2 \frac{1}{3}+\frac{\sqrt{3}}{4}
 
Option: 3 \frac{1}{2}+\frac{\sqrt{3}}{4}
 
Option: 4 \frac{1}{2}-\frac{\sqrt{3}}{4}
 
 

 

 

Area Bounded by Curves When Intersects at More Than One Point -

Area bounded by the curves  y = f(x),  y = g(x)  and  intersect each other in the interval [a, b]

First find the point of intersection of these curves  y = f(x) and  y = g(x) , let the point of intersection be x = c

Area of the shaded region  

=\int_{a}^{c}\{f(x)-g(x)\} d x+\int_{c}^{b}\{g(x)-f(x)\} d x

 

When two curves intersects more than one point

rea bounded by the curves  y=f(x),  y=g(x)  and  intersect each other at three points at  x = a, x = b amd x = c.

To find the point of intersection, solve f(x) = g(x).

For x ∈ (a, c), f(x) > g(x) and for x ∈ (c, b), g(x) > f(x).

Area bounded by curves,

\\\mathrm{A=} \int_{a}^{b}\left |f(x)-g(x) \right |dx\\\\\mathrm{\;\;\;\;=} \int_{a}^{c}\left ( f(x)-g(x) \right )dx+\int_{c}^{b}\left ( g(x)-f(x) \right )dx  

 

-

 

 

Required area = Area of trapezium ABCD - \int_{1/2}^{\sqrt3/2}\left ( x-\frac{1}{2} \right )^2dx

\\=\frac{1}{2}\left(\frac{\sqrt{3}-1}{2}\right)\left(\frac{1}{2}+1-\frac{\sqrt{3}}{2}\right)-\frac{1}{3}\left(\left(x-\frac{1}{2}\right)^{3}\right)_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\\=\frac{\sqrt3}{4}-\frac{1}{3}

Correct Option (1)

View Full Answer(1)
Posted by

avinash.dongre

Crack NEET with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
neet_ads
filter_img