A massless string connects two pulley of masses ' ' and '' respectively as shown in the figure.
The heavier pulley is fixed and free to rotate about its central axis while the other is free to rotate as well as translate. Find the acceleration of the lower pulley if the system was released from the rest. [Given, ]
Not understanding sir
View Full Answer(2)Calculate the acceleration of block of the following diagram. Assume all surfaces are frictionless . Here m1 = 100kg and m2 = 50kg
0.33m/s2
0.66m/s2
1m/s2
1.32m/s2
1.32
View Full Answer(4)No. of transition state in given figure
1
2
3
4
2
View Full Answer(2)
When cell has stalled DNA replication fork, which checkpoint should be predominantly activated?
G1/S
G2/M
M
Both G2 M and M
G2/M should be activated as the cell has stalled DNA replication fork.
View Full Answer(1)Study 40% syllabus and score up to 100% marks in JEE
At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O2 by volume for complete combustion. After combustion, the gases occupy 330 mL. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :
Option: 1 C4H8
Option: 2 C4H10
Option: 3 C3H6
Option: 4 C3H8
Volume of N2 in air = 375 × 0.8 = 300 ml
Volume of O2 in air = 375 × 0.2 = 75 ml
15ml
0 0 15x -
After combustion total volume
330 = 300 + 15x
x = 2
Volume of O2 used
y = 12
So hydrocarbon is = C2H12
None of the options matches it therefore it is a BONUS.
----------------------------------------------------------------------
Alternatively Solution
15ml
0 0 15x -
Volume of O2 used
If further information (i.e., 330 ml) is neglected, option (C3H8 ) only satisfy the above equation.
View Full Answer(1) An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by PVn=constant, then n is given by (Here CP and CV are molar specific heat at constant pressure and constant volume, respectively)
Option: 1
Option: 2
Option: 3
Option: 4
For a polytropic preocess
View Full Answer(1)A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals µ. The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, PQ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR. The values of the coefficient of friction µ and the distance x(=QR), are, respectively close to :
Option: 1 0.2 and 6.5 m
Option: 3 0.2 and 3.5 m
Option: 4 0.29 and 6.5 m
Work done by friction at QR = μmgx
In triangle, sin 30° = 1/2 = 2/PQ
PQ = 4 m
Work done by friction at PQ = μmg × cos 30° × 4 = μmg × √3/2 × 4 = 2√3μmg
Since work done by friction on parts PQ and QR are equal,
μmgx = 2√3μmg
x = 2√3 ≅ 3.5 m
Applying work energy theorem from P to R
decrease in P.E.=P.E.= loss of energy due to friction in PQPQ and QR
where h=2(given)
View Full Answer(1)In the following structure, the double bonds are marked as I, II, III and IV Geometrical isomerism is not possible at site (s) :
Option: 1 III
Option: 2 I
Option: 3 I and II
Option: 4 III and IV
Geometrical isomerism is not possible at Site I as two identical methyl groups are attached to the same carbon bearing the double bond.
Hence, the answer is Option (2)
View Full Answer(1) Which one of the following is an oxide ?
Option: 1 KO2
Option: 2 BaO2
Option: 3 SiO2
Option: 4 CsO2
SiO2 - oxide
KO???2? , CsO????2 - superoxides
BaO????2 - peroxide
View Full Answer(1) The following reaction occurs in the Blast Furnace where iron ore is reduced to iron metal : Fe2O3(s)+3 CO(g) 2 Fe(l)+3 CO2(g) Using the Le Chatelier’s principle, predict which one of the following will not disturb the equilibrium ?
Option: 1 Removal of CO
Option: 2 Removal of CO2
Option: 3 Addition of CO2
Option: 4 Addition of Fe2O3
According to Le Chatelier's principle change in concentration by changing the amount of reactant or product affect the equilibrium. However, the addition of solid reactant won't affect the concentration.
Therefore, addition of solid Fe2O???3 will not disturb the equilibrium.
View Full Answer(1)Study 40% syllabus and score up to 100% marks in JEE
NEET
BITSAT
JEE Main
AIIMS MBBS
SBI Clerk
SBI PO
MET
AP EAMCET
NIFT
COMEDK UGET
CBSE 8 Class
CBSE 9 Class
CBSE 10 Class
CBSE 11 Class
CBSE 12 Class
CBSE 7 Class
CBSE 6 Class
JEE Foundation
UG
Class 11
Class 12
Class 10
Class 6
Class 7
Class 8
Class 9
Biology
Chemistry
English
Logical Reasoning
Maths
Physics
Quantitative Aptitude
Reasoning
Science
Chemistry Part I Textbook for Class XII
Mathematics Part I Textbook for Class XII
Physics Part II Textbook for Class XII
Mathematics Part II Textbook for Class XII
Chemistry Part II Textbook for Class XII
Physics Part I Textbook for Class XI
Physics Part II Textbook for Class XI
Mathematics Textbook for Class XI
Chemistry Part I Textbook for Class XI
Chemistry Part II Textbook for Class XI
Biology Textbook for Class XI
Biology Textbook for Class XII
Science Textbook for Class VIII
Mathematics Textbook for Class IX
Science Textbook for Class IX
Mathematics Textbook for Class X
Science Textbook for Class X
Science Textbook for Class VI
Mathematics Textbook for Class VII
Science Textbook for Class VII
Exemplar Maths for Class 11
Exemplar Maths for Class 12
Exemplar Physics for Class 11
Exemplar Physics for Class 12
Exemplar Chemistry for Class 11
Exemplar Chemistry for Class 12
Exemplar Biology for Class 11
Exemplar Biology for Class 12
Exemplar Maths for Class 9
Exemplar Maths for Class 10
Exemplar Science for Class 9
Exemplar Science for Class 10
Classification of Elements and Periodic table
Units and Measurement
Kinematics
Newtons Laws of Motion
Impulse and Momentum
Work and Energy
Rotational Motion
Gravitation
Mechanics of Solids and Fluids
Oscillations
Waves
Heat and Thermodynamics
Electrostatics
Current Electricity
Magnetic Effect of Current
Electromagnetic Induction
Optics
Modern Physics
Electronic Devices
States of Matter
Atomic Structure
Chemical Bonding & Molecular Structure
Thermodynamics
Physical and Chemical Equilibria
Electrochemistry
Chemical Kinetics and Surface Chemistry
Hydrogen and s-block Elements
Trigonometry
Differential Calculus
Integral Calculus
Probability
Statistics
Verbal Reasoning
Non Verbal Reasoning
Grammar
Vocabulary
Reading comprehension
Linear Programming
Mathematical Modelling
Stereochemistry
Algebra
Two-dimensional Coordinate Geometry
Three dimensional Coordinate Geometry
Vectors
Ordinary Differential Equations
Biological , Industrial and Environmental chemistry
Theoretical Principles of Experimental Chemistry
Organic Compounds with Functional Groups Containing Oxygen and Nitrogen
Principles of Organic Chemistry and Hydrocarbons
p- d- and f-block elements
Purification and Characterisation of Organic Compounds
Basic principles of organic chemistry
Applications of definite integral
Electrostatics, Current electricity and Magnetostatics
Conservation of Plants and Animals
Reaching the Age of Adolescence
Chemical Effects of Electric Current
Stars and The Solar System
Pollution of Air and Water
Areas Of Parallelograms And Triangles
Atoms and Molecules
Structure of the Atom
The Fundamental unit of Life
Force and Laws of Motion
Pair of Linear Equations in two variables
Some Applications of Trigonometry
Periodic classification of elements
Life Processes
The Human Eye and the colorful world
Magnetic Effects of Electric Current
Sources of Energy
Sustainable Management of Natural Resources
Laws of Motion
System of Particles and Rotational motion
Mechanical Properties of Solids
Mechanical Properties of Fluids
Thermal Properties of Matter
Some basic concepts of Chemistry
Structure of Atom
Classification of Elements and Periodicity in Properties
Chemical Bonding and Molecular Structure
States of Matter
Thermodynamics
Equilibrium
Redox Reaction
Hydrogen
The S-Block Elements
The P-Block Elements
Organic chemistry- some basic principles and techniques
Hydrocarbons
Environmental Chemistry
Sets
Relations and Functions
Trigonometric Functions
Principle of Mathematical Induction
Complex Numbers and Quadratic equations
Linear Inequalities
Permutations and Combinations
Binomial Theorem
Sequences and Series
Straight Lines
Conic Section
Introduction to Three Dimensional Geometry
Limits and Derivatives
Statistics
Probability
The Living World
Morphology of Flowering Plants
Anatomy of Flowering Plants
Cell: The Unit of Life
Breathing and Exchange of Gases
Relations and Functions
Inverse Trigonometric Functions
Matrices
Determinants
Continuity and Differentiability
Application of Derivatives
Integrals
Application of Integrals
Differential Equations
Vector Algebra
Three Dimensional Geometry
Linear Programming
Probability
Dual nature of radiation and matter
The Solid State
Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principles and Processes of isolation of elements
The P-block elements
The d and f block elements
Coordination compounds
Haloalkanes and Haloarenes
Alcohols, Phenols and Ethers
Aldehydes, Ketones and Carboxylic Acids
Amines
Biomolecules
Polymers
Chemistry in Everyday life
Principles of Inheritance and Variation
Molecular basis of inheritance
Environmental Issues
Components of Food
Separation of substances
The Living Organisms Characteristics and Habitats
Motion and Measurement of distances
The Triangles and its Properties
Congruence of Triangles
Weather, Climate and Adaptions of Animals to Climate
Forests: our life line
Blood Relations
Calendar
Clocks
Cubes and Dices
Direction Sense Test
Series
Coding-Decoding
Word Formation
Ranking test
Missing Numbers from figure / Figure Matrix
Mirror / Water Image
Counting of Figures
Puzzles
Input Output
Deductions (Syllogyms, deductions)
The S Block Elements
The P Block Elements (Group 13 and Group 14)
The d and f block elements
Some Basic concepts of Chemistry
Kinematics
Force and Laws of Motion
Laws of motion
Work Energy and Power
Rotational Motion
Gravitation
Properties of Solids and Liquids
Basic concepts of Chemistry
Kinetic theory of Gases
Kinetic theory of Gases
The d-and f-Block Elements
Thermodynamics
Oscillations and Waves
Electrostatics
THE P - BLOCK ELEMENTS
Current Electricity
Magnetic Effects of Current and Magnetism
Electromagnetic Induction and Alternating currents
Electromagnetic Waves
Optics
Dual Nature of Matter and Radiation
Atoms And Nuclei
Electronic devices
Structure of Atom
Communication Systems
Classification of elements and periodicity in properties
Classification of Elements and Periodic table
States of matter
Cell Structure and Function
General Principle and process of Isolation of metals
Some Basic Principles of Organic Chemistry
Hydrocarbons
Organic Compounds containing Halogens
Organic Compounds containing Oxygen
Organic Compounds Containing Nitrogen
Laws of motion
Chemistry in Everyday Life
States of Matter : Gases and liquids
Purification and Characterisation of Organic Compounds
Principles Related to Practical Chemistry
Sets, Relations and Functions
Complex numbers and quadratic equations
Trigonometry
Limit , continuity and differentiability
Differential equations
Permutations and combinations
Motion of System Of Particles and Rigid Body
Human Physiology
Properties of bulk matter
Organic Chemistry - some Basic principles and techniques
Behaviour of Perfect Gas and Kinetic theory
Chemical kinetics
General Principles and processes of Isolation Elements
Magnetic Effects of Current and Magnetism
Dual Nature of Matter and Radiation
Chemistry in Everyday Life