Get Answers to all your Questions

header-bg qa

A block of mass 2 kg moving on a horizontal surface with speed of \mathrm{4 \mathrm{~ms}^{-1}} enters a rough surface ranging from \mathrm{x=0.5 \mathrm{~m} \text { to } x=1.5 \mathrm{~m} \text {. }} The retarding force in this range of rough surface is related to distance by \mathrm{\mathrm{F}=-\mathrm{k} x \text { where } \mathrm{k}=12 \mathrm{Nm}^{-1}}. The speed of the block as it just crosses the rough surface will be :

Option: 1

\mathrm{\text { zero }}


Option: 2

\mathrm{1.5 \mathrm{~ms}^{-1}}


Option: 3

\mathrm{2.0 \mathrm{~ms}^{-1}}


Option: 4

\mathrm{2.5 \mathrm{~ms}^{-1}}


Answers (1)

best_answer

\mathrm{F=-12 x}

\mathrm{mv \frac{d v}{d x}=-12x}

\mathrm{v d v=-\frac{12}{m} x d x }


\mathrm{\int_{v=4}^{v}vdv=-6\int_{x=0.5}^{x=1.5}xdx }


\mathrm{ \left [\frac{v^{2}}{2} \right ] ^{v}_{4}}=\mathrm{-6\left [ \frac{x^{2}}{2} \right ]^{1.5}_{0.5}}

\mathrm{\frac{v^{2}-16}{2}=-\frac{6}{2}\left[1.5^{2}-0.5^{2}\right]}

\mathrm{\frac{v^{2}}{2}-8=-3\times 2}

\mathrm{\frac{v^{2}}{2}=8-6=2}

\mathrm{\frac{v^{2}}{2}=8-6=2}

\mathrm{v^{2}=4}

\mathrm{v=2 m / s}

Hence 3 is the correct answer.
 

Posted by

vinayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE