Get Answers to all your Questions

header-bg qa

A block of mass m attached to a massless spring is performing oscillatory motion of amplitude 'A' on a frictionless horizontal plane. If half of the mass of the block breaks off when it is passing through its equilibrium point, the amplitude of oscillation for the remaining system become fA. The value of f is :
Option: 1 \frac{1}{\sqrt{2}}  
Option: 2 1
Option: 3 \frac{1}{2}
Option: 4 \sqrt{2}

Answers (1)

best_answer

Let the amplitude of oscillation for the remaining system is A_1

then

\begin{aligned} &\text { At equilibrium position }\\ &\mathrm{V}_{0}=\omega_{0} \mathrm{~A}=\sqrt{\frac{\mathrm{K}}{\mathrm{m}}} \mathrm{A}......(1)\\ &\mathrm{V}_0=\omega \mathrm{A}_1=\sqrt{\frac{\mathrm{K}}{\frac{\mathrm{m}}{2}}} \mathrm{~A}_1.......(2)\\ &\text{from equation (1) and (2)}\\ &\text{we get} \ \ \quad \mathrm{A}_1=\frac{\mathrm{A}}{\sqrt{2}} \end{aligned}

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE