Get Answers to all your Questions

header-bg qa

A bullet of mass 200 \mathrm{~g} having initial kinetic energy 90 \mathrm{~J} is shot inside a long swimming pool as shown in the figure. If it's kinetic energy reduces to 40 \mathrm{~J} within 1 \mathrm{~s}, the minimum length of the pool, the bullet has to travel so that it completely comes to rest is

Option: 1

45 \mathrm{~m}


Option: 2

90 \mathrm{~m}


Option: 3

125 \mathrm{~m}


Option: 4

25 \mathrm{~m}


Answers (1)

best_answer

Assuming that the bullet undergoes constant retardation

\mathrm{K E_i=90 \mathrm{~J}=\frac{1}{2} m u^2}

\mathrm{K E_f=40 \mathrm{~J}=\frac{1}{2} m v^2}

\mathrm{\frac{u}{v}=\frac{3}{2} \rightarrow(1)}

Also, \mathrm{90=\frac{1}{2}(0.2) u^2}

\mathrm{u=30 \mathrm{~m} / \mathrm{s}}

\mathrm{\therefore v=20 \mathrm{~m} / \mathrm{s} \quad (from\: eqn \: 1 )}

\mathrm{from \: t=0 \: to \: t=1 \mathrm{~s},}

\mathrm{ v=u+a t}

\mathrm{20=30+a(1)}

\mathrm{a=-10 \mathrm{~m} / \mathrm{s}^2}

The time at which bullet stops,

\mathrm{\therefore \quad v=0 =30+(-10) t }

\mathrm{ t=3 s }

\mathrm{S =u t+\frac{1}{2} a t^2 }

    \mathrm{=30(3)+\frac{1}{2}(-10)(3)^2}

    =90-45=45\mathrm{m}

Hence 1 is correct option




 

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE