Get Answers to all your Questions

header-bg qa

A circle of radius 2 lies in the first quadrant and touches both the axes of coordinates. Then the equation of the circle with centre at (6,5) and touching the above externally is.

Option: 1

\mathrm{(x-5)^2+(y-6)^2=3^2}


Option: 2

\mathrm{(x-3)^2+(y-5)^2=3^2}


Option: 3

\mathrm{(x-6)^2+(y-5)^2=3^2}


Option: 4

\mathrm{(x-2)^2+(y-5)^2=2^2}


Answers (1)

best_answer

\mathrm{C_1(2,2), 2 ~and ~C_2(6,5), r} both touch externally
\mathrm{ \therefore \quad C_1 C_2=2+r }
\mathrm{ \Rightarrow 5=2+r }
\mathrm{ \therefore \quad r=3 . }
Hence its equation is \mathrm{(x-6)^2+(y-5)^2=3^2 }

Posted by

Suraj Bhandari

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE