Get Answers to all your Questions

header-bg qa

A Particle of mass 0.6 \mathrm{~kg} executes simple harmonic oscillations along the x-axis, with a frequency of along the Position x=0.08 \mathrm{~m}, the Particle has Kinetic energy of 0.9 \mathrm{~J}, and Potential energy 0.7 \mathrm{~J}. Then amplitude of oscillation (in m).

Option: 1

0.0345


Option: 2

0.0298


Option: 3

0.0324


Option: 4

0.0657


Answers (1)

T=2 \pi \sqrt{\frac{m}{k}} \\

\therefore f=\frac{1}{2 n} \sqrt{\frac{K}{m}} \\

\frac{35}{\pi}=\frac{1}{2 \pi} \sqrt{\frac{K}{0.6}} \\

(70)^2(0.6)=K \\

K=2940 \mathrm{~N} / \mathrm{m}

Total energy =\frac{1}{2} K A^2 \\

K E+P E=\frac{1}{2} K A^2 

 0.9+0.4=\frac{1}{2} \times 2940 \times A^2 \\

 2 \times 1.3=2940 \times A^2 \\

 A^2=\frac{2 \times 1.3}{2940} \\

A=\sqrt{\frac{2 \times 1.3}{2940}} \\

A=\sqrt{\frac{26}{29400}}=\sqrt{\frac{13}{147 \times 100}}=\frac{\sqrt{13}}{\sqrt{147} \times 10} \\ A=\frac{3.605}{12.124 \times 10}=\frac{3605}{12124 \times 10}

A=0.0298

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE