Get Answers to all your Questions

header-bg qa

A pulley of radius \mathrm{1.5 \mathrm{~m}} is rotated about its axis by a force \mathrm{F=\left(12 \mathrm{t}-3 \mathrm{t}^{2}\right) N} applied tangentially (while\mathrm{ t} is measured in seconds). If moment of inertia of the pulley about its axis of rotation is \mathrm{4.5 \mathrm{~kg} \mathrm{~m}^{2}, } the number of rotations made by the pulley before its direction of motion is reversed, will be \mathrm{\frac{K}{\pi}. }The value of \mathrm{K } is ________.

Option: 1

18


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{F=12t-3t^{2}}

\mathrm{\tau=FR=18t-4.5t^{2}}

\mathrm{\alpha =\frac{\tau}{I}=4t-t^{2}}

The time when the direction of motion is reversed ,\mathrm{\omega =0}

\mathrm{\frac{d\omega }{dt}=\alpha }

\mathrm{d\omega =\alpha dt}

\mathrm{\omega =\left [ \frac{4t^{2}}{2} \frac{-t^{3}}{3}\right ]^{t}_{0}}

\mathrm{\omega =2t^{2}\: \frac{-t^{3}}{3}}

\mathrm{when\: \omega =0,0=2 t^2\left(1-\frac{t}{6}\right) }

\mathrm{t =0 \text { or } t=6 }

\mathrm{\frac{d \theta}{d t} =2 t^2-\frac{t^3}{3} }

\mathrm{d \theta =2 t^2 d t-\frac{t^3}{3} d t }

\mathrm{\theta =\frac{2 t^3}{3}-\frac{t^4}{12} }

\mathrm{=\frac{2}{3} \times 216-\frac{36 \times 36}{12} }

\mathrm{=144-108 }

\mathrm{\theta =36}

\mathrm{No.of \: rotation=\frac{\Theta }{2\pi }=\frac{18}{\pi } }

\mathrm{K=18}










 

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE