Get Answers to all your Questions

header-bg qa

A rectangular loop of length l and breadth b is placed at distance of x from infinitely long wire carrying current i such that the direction of current is parallel to breadth. If the loop moves away from the current wire in a direction perpendicular to it with a velocity v, then magnitude of the emf in the loop is (\mu _{0}= =permeability of free space)

Option: 1

\mathrm{\frac{\mu_0 \mathrm{iv}}{2 \pi \mathrm{x}}\left(\frac{l+\mathrm{b}}{\mathrm{b}}\right)}


Option: 2

\mathrm{\frac{\mu_0 i^2 \mathrm{v}}{2 \pi^2 \mathrm{x}} \log \left(\frac{\mathrm{b}}{l}\right)}


Option: 3

\mathrm{\frac{\mu_0 \mathrm{i} l \mathrm{bv}}{2 \pi \mathrm{x}(l+\mathrm{x})}}


Option: 4

\mathrm{\frac{\mu_0 \mathrm{ilbv}}{2 \pi} \log \left(\frac{\mathrm{x}+l}{\mathrm{x}}\right)}


Answers (1)

best_answer

We can show the situation as

Since, loop is moving away from the wire, so the direction of current in the loop will be as shown in the figure.
Net magnetic field on the loop due to wire,\mathrm{B}=\frac{\mu_0 \mathrm{i}}{2 \pi}\left(\frac{1}{\mathrm{x}}-\frac{1}{l+\mathrm{x}}\right)=\frac{\mu_0 \mathrm{i} l}{2 \pi \mathrm{x}(l+\mathrm{x})}

So, the magnitude of the emf in the loop , \mathrm{e=v B b=\frac{\mu_0 i l v b}{2 \pi x(l+x)}}

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE