Get Answers to all your Questions

header-bg qa

A silicon specimen is made into a P-type semi-conductor by doping, on an average, one Indium atom per \mathrm{5\times 10^{7}} silicon atoms. If the number density of atoms in the silicon specimen is \mathrm{5\times 10^{28}atoms/m^{3}},, then the number of acceptor atoms in silicon will be  

Option: 1

\mathrm{2.5 \times 10^{30} atoms / \mathrm{cm}^3}


Option: 2

\mathrm{1.0 \times 10^{13} atoms / \mathrm{cm}^3}


Option: 3

\mathrm{1.0 \times 10^{\text {15 }} atoms / \mathrm{cm}^3}


Option: 4

\mathrm{2.5 \times 10^{36} atoms / \mathrm{cm}^3}


Answers (1)

best_answer

Number density of atoms in silicon specimen \mathrm{=5 \times 10^{28} \text { atom } / \mathrm{m}^3=5 \times 10^{22} \text { atom } / \mathrm{cm}^3}

Since one atom of indium is doped in \mathrm{5 \times 10^7 \mathrm{Si} \text { atom. }}So number of indium atoms doped per \mathrm{cm^{-3}}of silicon.

\mathrm{n=\frac{5 \times 10^{22}}{5 \times 10^7}=1 \times 10^{15} \mathrm{atom} / \mathrm{cm}^3 .}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE