Get Answers to all your Questions

header-bg qa

A silicon specimen is made into a p – type semiconductor by doping on an average, one indium atom per \mathrm{5\times 10^{7}} 
silicon atoms. If the number density of atoms in the silicon specimen is\mathrm{5\times 10^{28}}m^{-3} atom , then the number of
acceptor atoms in silicon per cubic centimetre will be:

 

Option: 1

\mathrm{2.5 \times 10^{30}}


Option: 2

\mathrm{2.5 \times 10^{35}}


Option: 3

\mathrm{\quad 1.0 \times 10^{13}}


Option: 4

\mathrm{1.0 \times 10^{15}}


Answers (1)

best_answer

Number density of atom in silicon specimen \mathrm{=5 \times 10^{28} \text { atoms } \mathrm{m}^{-3}=5 \times 10^{22} \text { atoms } \mathrm{cm}^{-3}} . Since 1 atom of
indium is doped in \mathrm{5 \times 10^{7}}silicon atoms, so total number of indium atoms doped per \mathrm{cm^{3}} of silicon will be

\mathrm{\mathrm{n}=\frac{5 \times 10^{-22}}{5 \times 10^7}=1.0 \times 10^{15}}

 

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE