A stone is allowed to fall from the top of the tower 100m high and at the same time another stone is projected vertically upwards from the ground with a velocity of 25 m/s. Calculate when and where the two stones will meet
Given,
Height (h) = 100 m.
According to the question,
Let the two stones meet after t seconds at a point P which is at a height x above the ground as shown in figure.

For stone 1,
$
\begin{aligned}
& \mathrm{u}=0, \mathrm{~h}=(100-\mathrm{x}) \mathrm{m}, \\
& a=g=9.8 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
$
From s $=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^2$
$
(100-x)=0+\frac{1}{2} \times 9.8 t^2=4.9 t^2
$
For stone 2,
$
u=25 m / s, h=x, a=g=-9.8 m / s^2
$
Froms $=\mathrm{ut}+\frac{1}{2} \mathrm{at}^2$
$
x=25 t+\frac{1}{2}(-9.8) t^2=25 t-4.9 t^2
$
Adding equations (i) and (ii)
$
100-x+x=25 t \Rightarrow t=\frac{100}{25}=4 s
$
From equation (i),
$
\begin{aligned}
& 100-x=4.9 \times(4)^2=78.4 \\
& x=100-78.4=21.6 \mathrm{~m}
\end{aligned}
$
Study 40% syllabus and score up to 100% marks in JEE