Get Answers to all your Questions

header-bg qa

A variable chord of the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1} is a tangent to the circle \mathrm{x^2+y^2=c^2}. The locus of its middle point is

Option: 1

\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)^2=c^2\left(\frac{x^2}{a^4}+\frac{y^2}{b^4}\right)


Option: 2

\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)^2=c^2\left(\frac{x^2}{a^4}-\frac{y^2}{b^4}\right)


Option: 3

\left(\frac{x^2}{a^4}-\frac{y^2}{b^4}\right)^2=c^2\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)


Option: 4

\text { None of these }


Answers (1)

best_answer

Let \left(x_1, y_1\right) be the middle point of a variable chord of the hyperbola \frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

Equation of the chord is \frac{x x_1}{a^2}-\frac{y y_1}{b^2}=\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}                       ...(i)

[Using T=S_1 ]

If this chord touches the circle x^2+y^2=c^2, then length of \perp from the centre (0,0) upon (i) is equal to the radius c.

\therefore \pm \frac{\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}}{\sqrt{\frac{x_1^2}{a^4}+\frac{y_1^2}{b^4}}}=c \Rightarrow c^2\left(\frac{x_1^2}{a^4}+\frac{y_1^2}{b^4}\right)=\left(\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}\right)^2

Hence, locus of \left(x_1, y_1\right)\, \, is \, \, \left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)^2=c^2\left(\frac{x^2}{a^4}+\frac{y^2}{b^4}\right)

Posted by

Anam Khan

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE