Get Answers to all your Questions

header-bg qa

A water drop of diameter 2 \mathrm{~cm} is broken into 64 equal droplets. The surface tension of water is 0.075 \mathrm{~N} / \mathrm{m}. In this process the gain in surface energy will be :
 

Option: 1

2.8 \times 10^{-4} \mathrm{~J}


Option: 2

1.5 \times 10^{-3} \mathrm{~J}


Option: 3

1.9 \times 10^{-4} \mathrm{~J}


Option: 4

9.4 \times 10^{-5} \mathrm{~J}


Answers (1)

best_answer

Let radius of small drops = r

Volume conservation of water

\mathrm{\frac{4}{3} \pi R^{3} =64 \times \frac{4}{3} \pi r^{3}} \\

\mathrm{r^{3} =\frac{R^{3}}{64}, r=\frac{R}{4}}

Initial surface energy

\mathrm{U_{1}=S \times 4 \pi R^{2}}

Final surface energy is system

\mathrm{U_{2} =64 \times 5 \times 4 \pi r^{2}} \\

\mathrm{=64 \times 5 \times 4 \pi \times \frac{R^{2}}{16}} \\

\mathrm{=4 \times 5 \times 4 \pi R^{2}} \\

\mathrm{=4 U_{1}}

Gain in energy

\mathrm{\Delta U =U_{2}-U_{1}} \\

\mathrm{=4 U_{1}-U_{1}} \\

\mathrm{=3 U_{1} }\\

\mathrm{=3 \times 5 \times 4 \pi R^{2}} \\

\mathrm{=3 \times 0.075 \times 4 \pi \times 1 \times 10^{-4}} \\

\mathrm{=0.225 \times 4 \pi \times 10^{-4}} \\

\mathrm{=2.8 \times 10^{-4} \mathrm{~J}}

Hence correct option is 1

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE