Get Answers to all your Questions

header-bg qa

Among  \lim _{x \rightarrow 0} \sec ^{-1}\left(\frac{x}{\sin x}\right)\,\,.... (1)  and   \lim _{x \rightarrow 0} \sec ^{-1}\left(\frac{\sin x}{x}\right) \,\,....(2) 

 

Option: 1

(1) exists, (2) does not exist


Option: 2

(1) does not exist, (2) exists


Option: 3

both (1) and (2) exist


Option: 4

neither (1) nor (2) exists


Answers (1)

best_answer

\frac{x}{\sin x}   is more than 1 in the neighbourhood of ' 0 '. Hence \lim _{x \rightarrow 0} \sec ^{-1}\left(\frac{x}{\sin x}\right) exists while  \frac{\sin x}{x} is less than 1 in the neighbourhood of ' 0 '. Hence   \lim _{x \rightarrow 0} \sec ^{-1}\left(\frac{\sin x}{x}\right) does not exist.

Posted by

Suraj Bhandari

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE