Get Answers to all your Questions

header-bg qa

An ellipse inscribed in a semi-circle touches the circular arc at two distant points and also touches the bonding diameter. Its major axis is parallel to the bonding diameter. When the ellipse has the maximum possible area, then its eccentricity is

Option: 1

\frac{1}{\sqrt{2}}


Option: 2

\frac{1}{2}


Option: 3

\frac{1}{\sqrt{3}}


Option: 4

\sqrt{\frac{2}{3}}


Answers (1)

best_answer

Let ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}

and circle \mathrm{x^2+(y+b)^2=r^2 \quad\{ let \, \, radius =r\}}

Put \mathrm{x^2=a^2-\frac{a^2 y^2}{b^2}}

In circle, \mathrm{a^2-\frac{a^2 y^2}{b^2}+(y+b)^2=r^2}

\mathrm{ \begin{aligned} & \Rightarrow\left(1-\frac{a^2}{b^2}\right) y^2+2 b y+\left(a^2+b^2-r^2\right)=0 \\\\ & D=0 \Rightarrow r^2=\frac{a^4}{a^2-b^2} \Rightarrow b=a \sqrt{1-\frac{a^2}{r^2}} \\\\ & \text { Area }=\Delta=\pi a b=\pi a^2 \sqrt{1-\frac{a^2}{r^2}} \\\\ & \frac{d \Delta}{d a}=0 \Rightarrow a^2=\frac{2 r^2}{3} \Rightarrow a=\sqrt{\frac{2}{3}} r \\\\ & \therefore b=a \sqrt{1-\frac{2}{3}}=\frac{a}{\sqrt{3}} \Rightarrow e=\sqrt{\frac{2}{3}} \end{aligned} }

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE