Get Answers to all your Questions

header-bg qa

Polar form of z= \frac{1+7i}{\left ( 2-i \right )^{2}} will be 

  • Option 1)

    \sqrt{2}\left ( \cos \frac{\pi }{4} +i\sin \frac{\pi }{4}\right )

  • Option 2)

    \sqrt{2}\left ( \cos \frac{3\pi }{4} +i\sin \frac{3\pi }{4}\right )

  • Option 3)

    \sqrt{2}\left ( \cos \left (\frac{-\pi }{4} \right ) +i\sin \left (\frac{-\pi }{4} \right )\right )

  • Option 4)

    \sqrt{2}\left ( \cos \frac{\pi }{2} +i\sin \frac{\pi }{2}\right )

 

Answers (1)

best_answer

z=\frac{1+7i}{\left (2-i \right )^{2}}=\frac{1+7i}{3-4i}\times \frac{3+4i}{3+4i}=\frac{-25+25i}{25}

\Rightarrow \: z=-1+i

r=\left | z \right |=\sqrt{2}  and  arg\left ( z \right )=\pi -\tan ^{-1}\left | \frac{1}{-1} \right |

\Rightarrow r=\sqrt{2}  and  arg\left ( z \right )=\pi -\frac{\pi }{4}=\frac{3\pi }{4}

\therefore z=\sqrt{2}\left ( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right )

\therefore Option (B)

 

Polar Form of a Complex Number -

z=r(cos\theta+isin\theta)

- wherein

r= modulus of z and \theta is the argument of z

 

 


Option 1)

\sqrt{2}\left ( \cos \frac{\pi }{4} +i\sin \frac{\pi }{4}\right )

This is incorrect

Option 2)

\sqrt{2}\left ( \cos \frac{3\pi }{4} +i\sin \frac{3\pi }{4}\right )

This is correct

Option 3)

\sqrt{2}\left ( \cos \left (\frac{-\pi }{4} \right ) +i\sin \left (\frac{-\pi }{4} \right )\right )

This is incorrect

Option 4)

\sqrt{2}\left ( \cos \frac{\pi }{2} +i\sin \frac{\pi }{2}\right )

This is incorrect

Posted by

Plabita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE