Get Answers to all your Questions

header-bg qa

 

The sum of all values of \theta\epsilon (0,\pi/2) satisfying sin^{2}2\theta +cos^{4}2\theta = 3/4 is:

  • Option 1)

     

    \pi

  • Option 2)

     

    5\pi/4

  • Option 3)

     

    \pi/2

  • Option 4)

     

    3\pi/8

Answers (1)

best_answer

 

Trigonometric Identities -

\sin ^{2}\Theta + \cos ^{2}\Theta = 1

1 + \tan ^{2}\Theta = \sec ^{2}\Theta

1 + \cot ^{2}\Theta = cosec ^{2}\Theta

- wherein

They are true for all real values of \Theta

 

 

Graph of Trigonometric Ratios -

Graph 2

- wherein

This is the graph of y = \cos x

 

 ??????Given that

sin^{2}(2\theta) + cos^{4}(2\theta) = \frac{3}{4} \ \ \theta \epsilon \left ( 0, \frac{\pi}{2} \right )

\Rightarrow 1 - cos^{2}(2\theta) + cos^{4}(2\theta) = \frac{3}{4}

\because sin^{2}\theta + cos^{2}\theta = 1

\Rightarrow 4 cos^{4}(2\theta) -4 cos^{2}(2\theta) + 1 = 0

\Rightarrow (2 cos^{2}(2\theta) - 1 )^{2}= 0

cos^{2}(2\theta) = \frac{1}{2} = cos^{2}\left ( \frac{\pi}{4} \right )

2\theta= n\pi \pm \frac{\pi}{4} , n\epsilon I

\Rightarrow \theta= \frac{n\pi}{2} \pm \frac{\pi}{8}

as , \theta \epsilon \left ( 0, \frac{\pi}{2} \right )

So, \theta = \frac{\pi}{8} , \frac{\pi}{2} - \frac{\pi}{8}

Sum = \frac{\pi}{2}


Option 1)

 

\pi

Option 2)

 

5\pi/4

Option 3)

 

\pi/2

Option 4)

 

3\pi/8

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE