Get Answers to all your Questions

header-bg qa

At any point \mathrm{P} on the parabola \mathrm{y^2-2 y-4 x+5=0} a tangent is drawn  which meets directrix at \mathrm{Q} if the locus of point \mathrm{R}Which  divides \mathrm{QP}externally  in the rario \mathrm{\frac{1}{2}:1} is \mathrm{6 (x+a) ( y-a)^2+b=0} Find \mathrm{a+b}

Option: 1

3


Option: 2

5


Option: 3

2


Option: 4

6


Answers (1)

best_answer

Equation of the parabola is \mathrm{(y-1)^2=4(x-1)}

Let \mathrm{P\left(t^2+1,2 t+1\right)}

\mathrm{ \frac{d y}{d x} \text { at } P=\frac{1}{t} }

Equation of the tangent at \mathrm{ P\: is \: x-y t+\left(t^2+t-1\right)=0 } Equation of the directrix is \mathrm{ x=0 }

\mathrm{ \therefore Q\left(0, \frac{t^2+t-1}{t}\right) }

\mathrm{ R=(h, k)=\left(\frac{1+t^2-0}{-1}, \frac{2 t^2+t-2 t^2-2 t+2}{-t}\right) }

\mathrm{ \therefore h=-\left(1+t^2\right), k=\frac{t-2}{t}}

Eliminating \mathrm{ t,(h+1)(k-1)^2+4=0}

Locus of \mathrm{ R\: is \: (x+1)(y-1)^2+4=0.}

Hence option 2 is correct.

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE