Get Answers to all your Questions

header-bg qa

Equivalent resistance between point A and B is  \frac{73}{13n}\Omega . Then value of n is

Option: 1

1


Option: 2

3


Option: 3

4


Option: 4

5


Answers (1)

best_answer

Let total current entering at point Abe (x + y). Current distribution is shown in figure. Applying Kirchhoff’s law in loop (i)

$$ \begin{gathered} V_p-3(x-z)+y-2 x=V_p \\ -3 x+3 z+y-2 x=0 \\ 5 x-y-3 z=0 \end{gathered}------------(i)

In second loop

\begin{gathered} V_p-3 z+2(x+y-z)+3(x-z)=V_p \\ -3 z+2 x+2 y-2 z+3 x-3 z=0 \\ 5 x+2 y-8 z=0 \end{gathered}---------------(ii)

\begin{aligned} & \frac{x}{8-(-6)}=\frac{y}{-15-(-40)}=\frac{z}{10-(-5)} \\ & \frac{x}{14}=\frac{y}{25}=\frac{z}{15}=k \\ & x=14 k \\ & y=25 k \\ & z=15 k \end{aligned}

Now,

\begin{aligned} & V_A-2 x-3 z=V_B \\ & V_A-V_B=2 x+3 z=28 k+45 k=73 k \\ & \text { But } V_A-V_B=(x+y) R \\ & R=\frac{73 \mathrm{k}}{39 \mathrm{k}}=\frac{73}{39} \Omega \quad \therefore n=3 \end{aligned}

 

 

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE