Get Answers to all your Questions

header-bg qa

Find the equation of the line passing through the centre and which bisects the chord \mathrm{7 x+y-20=0} of the ellipse \mathrm{x^2+\frac{y^2}{7}=40.}

Option: 1

\mathrm{y=2x}


Option: 2

\mathrm{y=-2x}


Option: 3

\mathrm{y=x}


Option: 4

\mathrm{y=-x}


Answers (1)

The centre of the ellipse is (0,0).

Let the line be \mathrm{y=m x.}

The ends \mathrm{\left(x_1, y_1\right)} and \mathrm{\left(x_2, y_2\right)} of the chords are found by solving \mathrm{7 x+y-20=0} and

\mathrm{x^2+\frac{y^2}{7}=40}

We get, \mathrm{x^2+\frac{1}{7}(20-7 x)^2=40 \Rightarrow 56 x^2-280 x+120=0}

Its roots are \mathrm{x_1} and \mathrm{x_2}

So, \mathrm{x_1+x_2=\frac{280}{56}=5}

Also, \mathrm{y=20-7 x} or, \mathrm{y_1+y_2=40-7\left(x_1+x_2\right)=5}

The middle point of the chord is \mathrm{\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)} i.e. \mathrm{\left(\frac{5}{2}, \frac{5}{2}\right)}

As this lies on \mathrm{y=m x, m=1}

So, the equation of the line is \mathrm{y=x.}

Posted by

Ramraj Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE