Get Answers to all your Questions

header-bg qa

For the reaction:
\mathrm{2A\rightarrow 1/3B}
Rate of disappearance of ‘A’ related to the rate of appearance of ‘B’ by the expression:

 

Option: 1

\mathrm{-\frac{d[A]}{d t} =\frac{-2}{3} \times \frac{d[B]}{d t} \\ }


Option: 2

\mathrm{-\frac{d[A]}{d t} =\frac{+3}{2} \times \frac{d[B]}{d t} }


Option: 3

\mathrm{-\frac{d[A]}{d t}=-6 \times \frac{d[B]}{d t} }


Option: 4

\mathrm{-\frac{d[A]}{d t}=+6 \times \frac{d[B]}{d t}}


Answers (1)

best_answer

For a reaction, if: a P+b Q \rightarrow c R+d S
Overall rate r can be expressed as:
\mathrm{r=\frac{-1}{a} \times \frac{d[P]}{d t}=\frac{-1}{b} \times \frac{d[Q]}{d t}=\frac{+1}{c} \times \frac{d[R]}{d t}=\frac{+1 d[S]}{d d t} }
The given reaction is :

\mathrm{ 2 A \rightarrow \frac{1}{3} B \\ }

\mathrm{ r=\frac{-1}{2} \times \frac{d[A]}{d t}=\frac{+3}{1} \times \frac{d[B]}{d t} \\ }

\mathrm{ -\frac{d[A]}{d t}=+6 \times \frac{d[B]}{d t} }.
 

Posted by

Irshad Anwar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE