Get Answers to all your Questions

header-bg qa

From a point P, two mutually perpendicular tangents are drawn to circles \mathrm{x^2+y^2=a^2} and \mathrm{x^2+y^2=b^2}. Then the locus of P is a circle of radius

 

Option: 1

\mathrm{a+b}


Option: 2

\mathrm{\sqrt{a^2+b^2}}


Option: 3

\mathrm{a^2+b^2}


Option: 4

\mathrm{2 \sqrt{a^2+b^2}}


Answers (1)

best_answer

Equation of a tangent to \mathrm{x^2+y^2=a^2} is -

\mathrm{x \cos \alpha+y \sin \alpha=a}     -------------(1)

Equation of a tangent to \mathrm{ x^2+y^2=b^2}

\mathrm{x \cos \beta+y \sin \beta=b} --------(2)

As (1) and (2) are perpendicular to each other

\mathrm{ \left(-\frac{\cos \alpha}{\sin \alpha}\right)\left(-\frac{\cos \beta}{\sin \beta}\right)=-1}

Or \mathrm{ \cos (\alpha-\beta)=0 \Rightarrow \alpha-\beta=\pi / 2}

\therefore The equation of tangent (2) becomes

\mathrm{ x \cos \left(\alpha-\frac{\pi}{2}\right)+y \sin \left(\alpha-\frac{\pi}{2}\right)=b }

\mathrm{ x \sin \alpha-y \cos \alpha=b} ----------------(3)

Let P be (x1, y1) which lies on (2) and (3). 

\mathrm{\Rightarrow x_1 \cos \alpha+y_1 \sin \alpha=a x_1 \sin \alpha-y_1 \cos \alpha=b}

On eliminating \mathrm{\alpha }, we obtain \mathrm{x_1^2+y_1^2=a^2+b^2 }

The locus of \mathrm{\left(x_1, y_1\right) \text { is } x^2+y^2=a^2+b^2 }

\therefore The radius of the circle is \mathrm{\sqrt{a^2+b^2} }

 

 

 

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE