Get Answers to all your Questions

header-bg qa

Let  y=y(x)  be the solution of the differential equation 

\sin x\frac{\mathrm{d} y}{\mathrm{d} x}+y\cos x= 4x

 x\epsilon \left ( 0,\pi \right )  . If y\left ( \frac{\pi }{2} \right )=0  , then y\left ( \frac{\pi }{6} \right ) is equal to:

  • Option 1)

    \frac{-4}{9}\pi ^{2}

  • Option 2)

    \frac{4}{9\sqrt3}\pi ^{2}

  • Option 3)

    \frac{-8}{9\sqrt3}\pi ^{2}

  • Option 4)

    \frac{-8}{9}\pi ^{2}

 

Answers (2)

best_answer

\frac{dy}{dx}+y\cot x= 4x \csc x

IF = e^{\int P(dx)}

=e^{\int \cot x dx} = \sin x

Thus y \sin x = \int 4x \csc x \sin x dx

y \sin x = \int 4x dx = 2 x^{2}+c

also x= \pi /2 , y= 0

0= 2\left ( \frac{\pi }{2} \right )+c\Rightarrow c= -\pi ^{2}/2

Thus  y \sin x = 2x^{2}- \pi ^{2}/2

put x= \pi /6

 and y= -\frac{8}{9}\pi ^{2}

 

Linear Differential Equation -

\frac{dy}{dx}+Py= Q

- wherein

P, Q are functions of x alone.

 

 

 

 

 

 

 

 

 

 

 


Option 1)

\frac{-4}{9}\pi ^{2}

Option 2)

\frac{4}{9\sqrt3}\pi ^{2}

Option 3)

\frac{-8}{9\sqrt3}\pi ^{2}

Option 4)

\frac{-8}{9}\pi ^{2}

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE