Get Answers to all your Questions

header-bg qa

Ideal Gas Law
A certain amount of helium gas occupies a volume of \mathrm{0.04 \mathrm{~m}^3} at a temperature of \mathrm{300 \mathrm{~K}} and a pressure of \mathrm{3 \mathrm{~atm}}. Calculate the number of moles of helium gas present.
 

Option: 1

0.005 \: \mathrm{moles}


 


Option: 2

1.000 \: \mathrm{moles}


Option: 3

5.00 \: \mathrm{moles}


Option: 4

21.00 \: \mathrm{moles}


Answers (1)

best_answer

Given data:

Volume, \mathrm{V=0.04 \mathrm{~m}^3}

Temperature, \mathrm{T=300 \mathrm{~K}}

Pressure, \mathrm{P=3 \mathrm{~atm}}

The ideal gas law equation is:

\mathrm{ P V=\eta R T }

Solving for the number of moles, \eta :

\mathrm{ \eta =\frac{P V}{R T} }

Plugging in the values and the ideal gas constant \mathrm{ R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}: }

\mathrm{ \eta =\frac{(3 \mathrm{~atm}) \cdot\left(0.04 \mathrm{~m}^3\right)}{(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}) \cdot(300 \mathrm{~K})} }

\mathrm{\eta \approx 0.005 \mathrm{moles}}

Therefore ,the correct option is 1



 

 

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE